The Protein Structure Initiative Structural Biology Knowledgebase Technology Portal: a structural biology web resource

  • Lida K. Gifford
  • Lester G. Carter
  • Margaret J. Gabanyi
  • Helen M. Berman
  • Paul D. Adams


The Technology Portal of the Protein Structure Initiative Structural Biology Knowledgebase (PSI SBKB; is a web resource providing information about methods and tools that can be used to relieve bottlenecks in many areas of protein production and structural biology research. Several useful features are available on the web site, including multiple ways to search the database of over 250 technological advances, a link to videos of methods on YouTube, and access to a technology forum where scientists can connect, ask questions, get news, and develop collaborations. The Technology Portal is a component of the PSI SBKB (, which presents integrated genomic, structural, and functional information for all protein sequence targets selected by the Protein Structure Initiative. Created in collaboration with the Nature Publishing Group, the SBKB offers an array of resources for structural biologists, such as a research library, editorials about new research advances, a featured biological system each month, and a functional sleuth for searching protein structures of unknown function. An overview of the various features and examples of user searches highlight the information, tools, and avenues for scientific interaction available through the Technology Portal.


Database Protein Protein production Structural biology Structural genomics Technology 



Protein Structure Initiative


Structural Biology Knowledgebase


PSI:Biology–Materials Repository



The authors would like to thank the Protein Structure Initiative PIs, researchers, and Structural Biology Knowledgebase members for their collaboration and support of the Technology Portal. We thank Ralf Grosse-Kunstleve for server maintenance and technical support and Jeffrey Headd for helpful discussions. The Technology Portal is a resource center within the Protein Structure Initiative and is supported by grant U01GM093324 from the National Institute of General Medical Sciences. This work was supported in part by the US Department of Energy under Contract No. DE-AC02-05CH11231.


  1. 1.
    Gabanyi MJ et al (2011) The structural biology knowledgebase: a portal to protein structures, sequences, functions, and methods. J Struct Funct Genomics 12(2):45–54PubMedCrossRefGoogle Scholar
  2. 2.
    Berman HM et al (2009) The protein structure initiative structural genomics knowledgebase. Nucleic Acids Res 37(Database issue):D365–D368PubMedCrossRefGoogle Scholar
  3. 3.
    Apache HTTP Server Project (2011) Available from:
  4. 4.
    Django: a Python web framework (2005) Available from:
  5. 5.
    SQLite 3: SQL database engine. (2004) Available from:
  6. 6.
    Kuller A et al (2002) A biologist’s guide to synchrotron facilities: the BioSync web resource. Trends Biochem Sci 27(4):213–215PubMedCrossRefGoogle Scholar
  7. 7.
    Rossi P et al (2010) A microscale protein NMR sample screening pipeline. J Biomol NMR 46(1):11–22PubMedCrossRefGoogle Scholar
  8. 8.
    Everett JK, Acton TB, Montelione GT (2004) Primer Prim’er: a web based server for automated primer design. J Struct Funct Genomics 5(1–2):13–21PubMedCrossRefGoogle Scholar
  9. 9.
    Bowers PM et al (2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5(5):R35PubMedCrossRefGoogle Scholar
  10. 10.
    Price WN 2nd et al (2009) Understanding the physical properties that control protein crystallization by analysis of large-scale experimental data. Nat Biotechnol 27(1):51–57PubMedCrossRefGoogle Scholar
  11. 11.
    Goldschmidt L, Cooper DR, Derewenda ZS, Eisenberg D (2007) Toward rational protein crystallization: a web server for the design of crystallizable protein variants. Protein Sci 16(8):1569–1576CrossRefGoogle Scholar
  12. 12.
    Overton IM, van Niekerk CA, Barton GJ (2011) XANNpred: neural nets that predict the propensity of a protein to yield diffraction-quality crystals. Proteins 79(4):1027–1033PubMedCrossRefGoogle Scholar
  13. 13.
    Gipson B, Zeng X, Stahlberg H (2007) 2dx_merge: data management and merging for 2D crystal images. J Struct Biol 160(3):375–384PubMedCrossRefGoogle Scholar
  14. 14.
    Gipson B, Zeng X, Zhang ZY, Stahlberg H (2007) 2dx–user-friendly image processing for 2D crystals. J Struct Biol 157(1):64–72PubMedCrossRefGoogle Scholar
  15. 15.
    Ellrott K et al (2011) TOPSAN: a dynamic web database for structural genomics. Nucleic Acids Res 39(database issue):D494–D496PubMedCrossRefGoogle Scholar
  16. 16.
    Krishna SS et al (2010) TOPSAN: use of a collaborative environment for annotating, analyzing and disseminating data on JCSG and PSI structures. Acta Crystallogr Sect F Struct Biol Cryst Commun 66(Pt 10):1143–1147PubMedCrossRefGoogle Scholar
  17. 17.
    Weekes D et al (2010) TOPSAN: a collaborative annotation environment for structural genomics. BMC Bioinform 11426Google Scholar
  18. 18.
    Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA (2009) Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol 5(12):e1000585PubMedCrossRefGoogle Scholar
  19. 19.
    Kumar A et al (2010) Ligands in PSI structures. Acta Crystallogr Sect F Struct Biol Cryst Commun 66(Pt 10):1309–1316PubMedCrossRefGoogle Scholar
  20. 20.
    Pieper U et al (2009) MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 37(database issue):D347–D354PubMedCrossRefGoogle Scholar
  21. 21.
    Pieper U et al (2011) ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 39(database issue):D465–D474PubMedCrossRefGoogle Scholar
  22. 22.
    van den Bedem H, Lotan I, Latombe JC, Deacon AM (2005) Real-space protein-model completion: an inverse-kinematics approach. Acta Crystallogr D Biol Crystallogr 61(Pt 1):2–13PubMedCrossRefGoogle Scholar
  23. 23.
    Zolnai Z et al (2003) Project management system for structural and functional proteomics: sesame. J Struct Funct Genomics 4(1):11–23PubMedCrossRefGoogle Scholar
  24. 24.
    Baran MC et al (2006) SPINS: a laboratory information management system for organizing and archiving intermediate and final results from NMR protein structure determinations. Proteins 62(4):843–851PubMedCrossRefGoogle Scholar
  25. 25.
    Baran MC, Moseley HN, Sahota G, Montelione GT (2002) SPINS: standardized protein NMR storage. A data dictionary and object-oriented relational database for archiving protein NMR spectra. J Biomol NMR 24(2):113–121PubMedCrossRefGoogle Scholar
  26. 26.
    Bertone P et al (2001) SPINE: an integrated tracking database and data mining approach for identifying feasible targets in high-throughput structural proteomics. Nucleic Acids Res 29(13):2884–2898PubMedCrossRefGoogle Scholar
  27. 27.
    Goh CS et al (2003) SPINE 2: a system for collaborative structural proteomics within a federated database framework. Nucleic Acids Res 31(11):2833–2838PubMedCrossRefGoogle Scholar
  28. 28.
    Nederveen AJ et al (2005) RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins 59(4):662–672PubMedCrossRefGoogle Scholar
  29. 29.
    Huang YJ et al (2008) Targeting the human cancer pathway protein interaction network by structural genomics. Mol Cell Proteomics 7(10):2048–2060PubMedCrossRefGoogle Scholar
  30. 30.
    Northeast Structural Genomics Consortium. NESG structure gallery available from:
  31. 31.
    New York Structural Genomics Research Consortium. NYSGRC structure gallery available from:
  32. 32.
    Joint Center for Structural Genomics. JCSG structure gallery. Available from:
  33. 33.
    Midwest Center for Structural Genomics. MCSG structure gallery available from:
  34. 34.
    Elsliger MA et al (2010) The JCSG high-throughput structural biology pipeline. Acta Crystallogr Sect F Struct Biol Cryst Commun 66(Pt 10):1137–1142PubMedCrossRefGoogle Scholar
  35. 35.
    Kreusch A, Lesley SA (2004) High-throughput cloning, expression, and purification technologies. In: Grandi G (ed) Genomics, proteomics, and vaccines. Wiley Press, UK, pp 171–184Google Scholar
  36. 36.
    Gerdts CJ et al (2006) Time-controlled microfluidic seeding in nL-volume droplets to separate nucleation and growth stages of protein crystallization. Angew Chem Int Ed Engl 45(48):8156–8160PubMedCrossRefGoogle Scholar
  37. 37.
    Zheng B, Gerdts CJ, Ismagilov RF (2005) Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. Curr Opin Struct Biol 15(5):548–555PubMedCrossRefGoogle Scholar
  38. 38.
    Phizackerley RP, Cohen AE, Ellis PJ, Miller MD, Deacon AM (2002) An automated system to mount cryo-cooled protein crystals on a synchrotron beamline, using compact sample cassettes and a small-scale robot. J Appl Crystallogr 35:720–726CrossRefGoogle Scholar
  39. 39.
    Cormier CY (2010) Protein structure initiative material repository: an open shared public resource of structural genomics plasmids for the biological community. Nucleic Acids Res 38(Database issue):D743–D749PubMedCrossRefGoogle Scholar
  40. 40.
    Cormier CY et al (2011) PSI:Biology-materials repository: a biologist’s resource for protein expression plasmids. J Struct Funct Genomics 12(2):55–62PubMedCrossRefGoogle Scholar
  41. 41.
    PSI SBKB Technology Portal (2009) High-throughput protein expression. Available from:
  42. 42.
    PSI SBKB Technology Portal (2009) LIC (Ligation-independent cloning) vectors. Available from:
  43. 43.
    PSI SBKB Technology Portal (2009) New vectors for co-expression of proteins. Available from:
  44. 44.
    PSI SBKB Technology Portal (2009) Customized expression vector platform. Available from:
  45. 45.
    PSI SBKB Technology Portal (2009) Structural genomics methods applied to production of TEV protease. Available from:
  46. 46.
    PSI SBKB Technology Portal (2009) A combined approach to improving large-scale production of tobacco etch virus protease. Available from:
  47. 47.
    PSI SBKB Technology Portal (2009) One-plasmid tunable co-expression for mycobacterial protein-protein interaction studies. Available from:

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lida K. Gifford
    • 1
  • Lester G. Carter
    • 2
  • Margaret J. Gabanyi
    • 3
  • Helen M. Berman
    • 3
  • Paul D. Adams
    • 1
  1. 1.Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Beamline 4.2Stanford Linear Accelerator CenterMenlo ParkUSA
  3. 3.Department of Chemistry & Chemical Biology, RutgersThe State University of New JerseyPiscatawayUSA

Personalised recommendations