Solution NMR structures reveal a distinct architecture and provide first structures for protein domain family PF04536

  • Alexander Eletsky
  • Thomas B. Acton
  • Rong Xiao
  • John K. Everett
  • Gaetano T. Montelione
  • Thomas SzyperskiEmail author


The protein family (Pfam) PF04536 is a broadly conserved domain family of unknown function (DUF477), with more than 1,350 members in prokaryotic and eukaryotic proteins. High-quality NMR structures of the N-terminal domain comprising residues 41–180 of the 684-residue protein CG2496 from Corynebacterium glutamicum and the N-terminal domain comprising residues 35–182 of the 435-residue protein PG0361 from Porphyromonas gingivalis both exhibit an α/β fold comprised of a four-stranded β-sheet, three α-helices packed against one side of the sheet, and a fourth α-helix attached to the other side. In spite of low sequence similarity (18%) assessed by structure-based sequence alignment, the two structures are globally quite similar. However, moderate structural differences are observed for the relative orientation of two of the four helices. Comparison with known protein structures reveals that the α/β architecture of CG2496(41–180) and PG0361(35–182) has previously not been characterized. Moreover, calculation of surface charge potential and identification of surface clefts indicate that the two domains very likely have different functions.


CG2496 PG0361 CgR26A PgR37A PF04536 DUF477 Structural genomics 


C-Ala domain

C-terminal domain of alanyl-tRNA synthetase


4,4-dimethyl-4-silapentane-1-sulfonate sodium salt




2-(N-morpholino)ethanesulfonic acid


Northeast structural genomics consortium


Nuclear overhauser effect


Protein Data Bank


Root mean square deviation



We thank D. Lee, K. Hamilton, D. Wang, W. A. Buchwald, C. Ciccosanti, H. Janjua, R. Nair and S. Bhattacharya for helpful discussions and technical support. This work was supported by the National Institutes of Health, grant number: U54 GM094597 (T.S. and G.T.M.). When NMR data acquisition took place, Prof. T. Szyperski was a member of the New York Structural Biology Center. The Center is a STAR center supported by the New York State Office of Science, Technology, and Academic Research. 900 MHz spectrometer was purchased with the funds from NIH, USA, the Keck Foundation, New York State, and the NYC Economic Development Corporation.

Supplementary material

10969_2011_9122_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2256 kb)


  1. 1.
    Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251PubMedCrossRefGoogle Scholar
  2. 2.
    Higgins DG, Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  3. 3.
    Dessailly BH, Nair R, Jaroszewski L, Fajardo JE, Kouranov A, Lee D, Fiser A, Godzik A, Rost B, Orengo C (2009) PSI-2: structural genomics to cover protein domain family space. Structure 17:869–881PubMedCrossRefGoogle Scholar
  4. 4.
    Liu JF, Montelione GT, Rost B (2007) Novel leverage of structural genomics. Nat Biotechnol 25:850–853Google Scholar
  5. 5.
    Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:537–540Google Scholar
  6. 6.
    Acton TB, Gunsalus KC, Xiao R, Ma LC, Aramini J, Baran MC, Chiang YW, Climent T, Cooper B, Denissova NG, Douglas SM, Everett JK, Ho CK, Macapagal D, Rajan PK, Shastry R, Shih LY, Swapna GVT, Wilson M, Wu M, Gerstein M, Inouye M, Hunt JF, Montelione GT (2005) Nuclear magnetic resonance of biological macromolecules, Part C. In: James TL (ed.) Methods in enzymology, vol 394. Elsevier, San Diego, pp. 210–243Google Scholar
  7. 7.
    Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY, Ma LC, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R, Swapna GVT, Tong SN, Wang DY, Wang HA, Zhao L, Montelione GT, Acton TB (2010) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 172:21–33PubMedCrossRefGoogle Scholar
  8. 8.
    Acton TB, Xiao R, Anderson S, Aramini J, Buchwald WA, Ciccosanti C, Conover K, Everett J, Hamilton K, Huang YJ, Janjua H, Kornhaber G, Lau J, Lee DY, Liu GH, Maglaqui M, Ma LC, Mao L, Patel D, Rossi P, Sahdev S, Shastry R, Swapna GVT, Tang YF, Tong SC, Wang DY, Wang H, Zhao L, Montelione GT (2011) Fragment-based drug design: tools, practical approaches, and examples. In: Kuo LC (ed) Methods in enzymology, vol 493, pp. 21–60Google Scholar
  9. 9.
    Neri D, Szyperski T, Otting G, Senn H, Wuthrich K (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28:7510–7516PubMedCrossRefGoogle Scholar
  10. 10.
    Moseley HNB, Monleon D, Montelione GT (2001) Nuclear magnetic resonance of biological macromolecules, Pt B. In James TL, Dötsch V, Schmitz U (eds.) Methods in enzymology, vol 339. Elsevier, San Diego, pp. 91–108Google Scholar
  11. 11.
    Zimmerman DE, Kulikowski CA, Huang YP, Feng WQ, Tashiro M, Shimotakahara S, Chien CY, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610PubMedCrossRefGoogle Scholar
  12. 12.
    Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol 5:e1000307PubMedCrossRefGoogle Scholar
  13. 13.
    Moseley HNB, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355PubMedCrossRefGoogle Scholar
  14. 14.
    Huang YPJ, Moseley HNB, Baran MC, Arrowsmith C, Powers R, Tejero R, Szyperski T, Montelione GT (2005) Nuclear magnetic resonance of biological macromolecules, Part C. In: James TL (ed) Methods in enzymology, vol 394. Elsevier, San Diego, pp 111–141Google Scholar
  15. 15.
    Liu GH, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton TA, Arrowsmith CH, Montelione GT, Szyperski T (2005) NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci USA 102:10487–10492PubMedCrossRefGoogle Scholar
  16. 16.
    Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298PubMedCrossRefGoogle Scholar
  17. 17.
    Herrmann T, Guntert P, Wuthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227PubMedCrossRefGoogle Scholar
  18. 18.
    Huang YJ, Tejero R, Powers R, Montelione GT (2006) A topology-constrained distance network algorithm for protein structure determination from NOESY data. Proteins 62:587–603PubMedCrossRefGoogle Scholar
  19. 19.
    Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302PubMedCrossRefGoogle Scholar
  20. 20.
    Linge JP, Williams MA, Spronk C, Bonvin A, Nilges M (2003) Refinement of protein structures in explicit solvent. Proteins 50:496–506PubMedCrossRefGoogle Scholar
  21. 21.
    Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr Sect D Biol Crystallogr 54:905–921CrossRefGoogle Scholar
  22. 22.
    Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66:778–795PubMedCrossRefGoogle Scholar
  23. 23.
    Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674PubMedCrossRefGoogle Scholar
  24. 24.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein Data Bank. Nucleic Acids Res 28:235–242PubMedCrossRefGoogle Scholar
  25. 25.
    Holm L, Sander C (1995) Dali: a network tool for protein structure comparison. Trends Biochem Sci 20:478–480PubMedCrossRefGoogle Scholar
  26. 26.
    Schimmel P, Guo M, Chong YE, Beebe K, Shapiro R, Yang XL (2009) The C-Ala domain brings together editing and aminoacylation functions on one tRNA. Science 325:744–747PubMedCrossRefGoogle Scholar
  27. 27.
    Honig B, Nayal M (2006) On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 63:892–906PubMedCrossRefGoogle Scholar
  28. 28.
    Laskowski RA (1995) Surfnet: a program for visualizing molecular-surfaces, cavities, and intermolecular interactions. J Mol Graphics 13:323Google Scholar
  29. 29.
    Petrey D, Fischer M, Honig B (2009) Structural relationships among proteins with different global topologies and their implications for function annotation strategies. Proc Natl Acad Sci USA 106:17377–17382PubMedCrossRefGoogle Scholar
  30. 30.
    Alm EJ, Price MN, Huang KH, Arkin AP (2005) A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res 33:880–892PubMedCrossRefGoogle Scholar
  31. 31.
    Nair R, Liu J, Soong T-T, Acton TB, Everett JK, Kouranov A, Fiser A, Godzik A, Jaroszewski L, Orengo C, Montelione GT, Rost B (2009) Structural genomics is the largest contributor of novel structural leverage. J Struct Funct Genomics 10:181–191PubMedCrossRefGoogle Scholar
  32. 32.
    Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486PubMedCrossRefGoogle Scholar
  33. 33.
    Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D Biol Crystallogr 66:12–21CrossRefGoogle Scholar
  34. 34.
    Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with 3-dimensional profiles. Nature 356:83–85PubMedCrossRefGoogle Scholar
  35. 35.
    Sippl MJ (1993) Recognition of errors in 3-dimensional structures of proteins. Proteins 17:355–362PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alexander Eletsky
    • 1
    • 2
  • Thomas B. Acton
    • 3
    • 4
    • 5
  • Rong Xiao
    • 3
    • 4
    • 5
  • John K. Everett
    • 3
    • 4
    • 5
  • Gaetano T. Montelione
    • 3
    • 4
    • 5
  • Thomas Szyperski
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryThe State University of New York at BuffaloBuffaloUSA
  2. 2.Northeast Structural Genomics ConsortiumBuffaloUSA
  3. 3.Center for Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, RutgersThe State University of New JerseyPiscatawayUSA
  4. 4.Department of Biochemistry, Robert Wood Johnson Medical SchoolUMDNJPiscatawayUSA
  5. 5.Northeast Structural Genomics ConsortiumPiscatawayUSA

Personalised recommendations