Journal of Structural and Functional Genomics

, Volume 11, Issue 3, pp 191–199 | Cite as

The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins

  • James Love
  • Filippo Mancia
  • Lawrence Shapiro
  • Marco Punta
  • Burkhard Rost
  • Mark Girvin
  • Da-Neng Wang
  • Ming Zhou
  • John F. Hunt
  • Thomas Szyperski
  • Eric Gouaux
  • Roderick MacKinnon
  • Ann McDermott
  • Barry Honig
  • Masayori Inouye
  • Gaetano Montelione
  • Wayne A. Hendrickson


The New York Consortium on Membrane Protein Structure (NYCOMPS) was formed to accelerate the acquisition of structural information on membrane proteins by applying a structural genomics approach. NYCOMPS comprises a bioinformatics group, a centralized facility operating a high-throughput cloning and screening pipeline, a set of associated wet labs that perform high-level protein production and structure determination by x-ray crystallography and NMR, and a set of investigators focused on methods development. In the first three years of operation, the NYCOMPS pipeline has so far produced and screened 7,250 expression constructs for 8,045 target proteins. Approximately 600 of these verified targets were scaled up to levels required for structural studies, so far yielding 24 membrane protein crystals. Here we describe the overall structure of NYCOMPS and provide details on the high-throughput pipeline.


Membrane proteins Structural genomics High throughput NMR X-ray 



We thank past and present colleagues who have participated in the development of the Protein Production Facility: Brandon Hillerich, Brian Kloss, Renato Bruni, Arianne Morrison, Patricia Rodriguez, Amanda Meyer, Jeff Bonanno, Zsolt Zolnai, Michael Weiner, Reinhard Grisshammer, and Gunnar von Heijne. This work was supported in part by a Cooperative Agreement from the NIGMS Protein Structure Initiative, U54GM075026.


  1. 1.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  2. 2.
    Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074CrossRefPubMedGoogle Scholar
  3. 3.
    Baas BJ, Denisov IG, Sligar SG (2004) Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys 430:218–228CrossRefPubMedGoogle Scholar
  4. 4.
    Bernard P, Couturier M (1992) Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol 226:735–745CrossRefPubMedGoogle Scholar
  5. 5.
    Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–402CrossRefPubMedGoogle Scholar
  6. 6.
    Chang G, Roth CB, Reyes CL, Pornillos O, Chen YJ, Chen AP (2006) Retraction. Science 314:1875CrossRefPubMedGoogle Scholar
  7. 7.
    Chill JH, Louis JM, Miller C, Bax A (2006) NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci 15:684–698CrossRefPubMedGoogle Scholar
  8. 8.
    Civjan NR, Bayburt TH, Schuler MA, Sligar SG (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotechniques 35(3):556–563PubMedGoogle Scholar
  9. 9.
    Daley DO, Rapp M, Granseth E, Melen K, Drew D, von Heijne G (2005) Global topology analysis of the Escherichia coli inner membrane proteome. Science 308:1321–1323CrossRefPubMedGoogle Scholar
  10. 10.
    Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180:385–398CrossRefPubMedGoogle Scholar
  11. 11.
    Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126:3477–3487CrossRefPubMedGoogle Scholar
  12. 12.
    Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347:827–839CrossRefPubMedGoogle Scholar
  13. 13.
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77CrossRefPubMedGoogle Scholar
  14. 14.
    Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971CrossRefPubMedGoogle Scholar
  15. 15.
    Fischer G, Kosinska-Eriksson U, Aponte-Santamaría C, Palmgren M, Geijer C, Hedfalk K, Hohmann S, de Groot BL, Neutze R, Lindkvist-Petersson K (2009) Crystal structure of a yeast aquaporin at 1.15 Ångstrom reveals a novel gating mechanism. PLoS Biol 7(6):e1000130CrossRefPubMedGoogle Scholar
  16. 16.
    Forrest LR, Tang CL, Honig B (2006) On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys J 91:508–517CrossRefPubMedGoogle Scholar
  17. 17.
    Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406CrossRefPubMedGoogle Scholar
  18. 18.
    Garavito RM, Picot D, Loll PJ (1996) Strategies for crystallizing membrane proteins. J Bioenerg Biomembr 28:13–27PubMedGoogle Scholar
  19. 19.
    Hanson MA, Stevens RC (2009) Discovery of new GPCR biology: one receptor structure at a time. Structure 17:8–14CrossRefPubMedGoogle Scholar
  20. 20.
    Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32CrossRefPubMedGoogle Scholar
  21. 21.
    Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669CrossRefPubMedGoogle Scholar
  22. 22.
    Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41CrossRefPubMedGoogle Scholar
  23. 23.
    Kanelis V, Forman-Kay JD, Kay LE (2001) Multidimensional NMR methods for protein structure determination. IUBMB life 52:291–302CrossRefPubMedGoogle Scholar
  24. 24.
    Khademi S, O’Connell J III, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305:1587–1594CrossRefPubMedGoogle Scholar
  25. 25.
    Koszelak-Rosenblum M, Krol A, Mozumdar N, Wunsch K, Ferin A, Cook E, Veatch CK, Nagel R, Luft JR, Detitta GT, Malkowski MG (2009) Determination and application of empirically derived detergent phase boundaries to effectively crystallize membrane proteins. Protein Sci 18:1828–1839CrossRefPubMedGoogle Scholar
  26. 26.
    Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefPubMedGoogle Scholar
  27. 27.
    Kwong PD, Wyatt R, Desjardins E, Robinson J, Culp JS, Hellmig BD, Sweet RW, Sodroski J, Hendrickson WA (1999) Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1). J Biol Chem 274:4115–4123CrossRefPubMedGoogle Scholar
  28. 28.
    Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659CrossRefPubMedGoogle Scholar
  29. 29.
    Liu J, Hegyi H, Acton TB, Montelione GT, Rost B (2004) Automatic target selection for structural genomics on eukaryotes. Proteins 56:188–200CrossRefPubMedGoogle Scholar
  30. 30.
    Lundback AK, van den Berg S, Hebert H, Berglund H, Eshaghi S (2008) Exploring the activity of tobacco etch virus protease in detergent solutions. Anal Biochem 382:69–71CrossRefPubMedGoogle Scholar
  31. 31.
    McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Ann Rev Biophys 38:385–403CrossRefGoogle Scholar
  32. 32.
    Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605CrossRefPubMedGoogle Scholar
  33. 33.
    Nallamsetty S, Kapust RB, Tozser J, Cherry S, Tropea JE, Copeland TD, Waugh DS (2004) Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease in vivo and in vitro. Protein Expr Purif 38:108–115CrossRefPubMedGoogle Scholar
  34. 34.
    Ostermeier C, Michel H (1997) Crystallization of membrane proteins. Curr Opin Struct Biol 7:697–701CrossRefPubMedGoogle Scholar
  35. 35.
    Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65CrossRefPubMedGoogle Scholar
  36. 36.
    Punta M, Love J, Handelman S, Hunt JF, Shapiro L, Hendrickson WA, Rost B (2009) Structural genomics target selection for the New York consortium on membrane protein structure. J Struct Funct Genomics 10:255–268CrossRefPubMedGoogle Scholar
  37. 37.
    Raunser S, Walz T (2009) Electron crystallography as a technique to study the structure on membrane proteins in a lipidic environment. Ann Rev Biophys 38:89–105CrossRefGoogle Scholar
  38. 38.
    Salzmann M, Pervushin K, Wider G, Senn H, Wuthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95:13585–13590CrossRefPubMedGoogle Scholar
  39. 39.
    Savage DF, Egea PF, Robles-Colmenares Y, O’Connell JD 3rd, Stroud RM (2003) Architecture and selectivity in aquaporins: 2.5 a X-ray structure of aquaporin Z. PLoS biology 1:E72CrossRefPubMedGoogle Scholar
  40. 40.
    Shaw AW, McLean MA, Sligar SG (2004) Phospholipid phase transitions in homogeneous nanometer scale bilayer discs. FEBS Lett 556:260–264CrossRefPubMedGoogle Scholar
  41. 41.
    Suzuki M, Mao L, Inouye M (2007) Single protein production (SPP) system in Escherichia coli. Nat Protoc 2:1802–1810CrossRefPubMedGoogle Scholar
  42. 42.
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144CrossRefPubMedGoogle Scholar
  43. 43.
    Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang Q, Atreya HS, Kamen DE, Girvin ME, Szyperski T (2008) GFT projection NMR based resonance assignment of membrane proteins: application to subunit C of E. coli F(1)F (0) ATP synthase in LPPG micelles. J Biomol NMR 40:157–163CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • James Love
    • 1
  • Filippo Mancia
    • 2
  • Lawrence Shapiro
    • 3
  • Marco Punta
    • 3
  • Burkhard Rost
    • 3
  • Mark Girvin
    • 4
  • Da-Neng Wang
    • 5
  • Ming Zhou
    • 2
  • John F. Hunt
    • 6
  • Thomas Szyperski
    • 7
  • Eric Gouaux
    • 8
  • Roderick MacKinnon
    • 9
  • Ann McDermott
    • 10
  • Barry Honig
    • 11
  • Masayori Inouye
    • 12
  • Gaetano Montelione
    • 13
  • Wayne A. Hendrickson
    • 11
  1. 1.NYCOMPS Core LaboratoryNew York Structural Biology CenterNew YorkUSA
  2. 2.Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUSA
  3. 3.Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUSA
  4. 4.Department of BiochemistryAlbert Einstein College of MedicineBronx, New YorkUSA
  5. 5.Skirball Institute of Biomolecular MedicineNew York University Medical CenterNew YorkUSA
  6. 6.Department of Biological SciencesColumbia UniversityNew YorkUSA
  7. 7.Department of ChemistryUniversity of BuffaloBuffaloUSA
  8. 8.Howard Hughes Medical Institute, The Vollum InstituteOregon Health & Science UniversityPortlandUSA
  9. 9.Howard Hughes Medical InstituteThe Rockefeller UniversityNew YorkUSA
  10. 10.Department of ChemistryColumbia UniversityNew YorkUSA
  11. 11.Howard Hughes Medical Institute, Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUSA
  12. 12.Department of Molecular Biology and BiochemistryRutgers, The State University of New JerseyPiscatawayUSA
  13. 13.Department of BiochemistryUMDNJPiscatawayUSA

Personalised recommendations