X-ray structure determination of the glycine cleavage system protein H of Mycobacterium tuberculosis using an inverse Compton synchrotron X-ray source

  • Jan Abendroth
  • Michael S. McCormick
  • Thomas E. Edwards
  • Bart Staker
  • Roderick Loewen
  • Martin Gifford
  • Jeff Rifkin
  • Chad Mayer
  • Wenjin Guo
  • Yang Zhang
  • Peter Myler
  • Angela Kelley
  • Erwin Analau
  • Stephen Nakazawa Hewitt
  • Alberto J. Napuli
  • Peter Kuhn
  • Ronald D. Ruth
  • Lance J. Stewart
Article

Abstract

Structural genomics discovery projects require ready access to both X-ray diffraction and NMR spectroscopy which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large multi acre synchrotron facilities for data collection. In this paper we report on the development and use of the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam.

Keywords

Compact light source X-ray crystallography Inverse Compton 

Notes

Acknowledgments

We gratefully acknowledge NIH funding for the developments included in this paper. The prototype CLS was funded by the NIGMS under grant R44-GM66511. The X-ray station and optics development was funded by the NIGMS and NCRR under grant R44-GM074437. The development of the Beta CLS was funded by the NIGMS and NCRR which have co-sponsored the Accelerated Technologies Center for Gene to 3D Structure (www.atcg3d.org), a PSI-2 Specialized Center, under Grant U54 GM074961. The production of MytuGCSPH protein and crystals was funded by NIAID under Federal Contract No. HHSN272200700057C which supports the Seattle Structural Genomics Center for Infectious Disease (www.SSGCID.org). Special thanks to Shellie Dieterich, Becky Poplawski, and Jeff Christensen at Emerald BioStructures for their support in molecular biology and protein crystallization. The authors also wish to thank the organizing committee of the PSI organized Enabling Technologies Meetings held each spring on the NIH campus. LTI collaborators wish to thank the staff at LTI, Michael Blum, Jens Als-Nielsen, Anette Jensen and Bill Weis.

References

  1. 1.
    Aslanidis C, De Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acid Res 18:6069–6074CrossRefPubMedGoogle Scholar
  2. 2.
    Bech M (2009) X-ray imaging with a grating interferometer. Ph.D. Dissertation. University of Copenhagen, DenmarkGoogle Scholar
  3. 3.
    Bech M, Bunk O, David C, Ruth R, Rifkin J, Loewen R, Feidenhans’l R, Pfeiffer F (2009) Hard X-ray phase-contrast imaging with the compact light source based on inverse compton X-rays. J Synchrotron Rad 16:43–47CrossRefGoogle Scholar
  4. 4.
    Cohen-Addad C, Faure M, Neuberger M, Ober R, Sieker L, Bourguignon J, Macherel D, Douce R (1997) Structural studies of the glycine decarboxylation complex from pea leaf mitrochondria. Biochimie 79:637–644CrossRefPubMedGoogle Scholar
  5. 5.
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D Biol Crystallogr 60:2126–2132CrossRefGoogle Scholar
  6. 6.
    Faure M, Bourguignon J, Neuburger M, Macherel D, Sieker L, Ober R, Kahn R, Cohen-Addad C, Douce R (2000) Interaction between the lipoamide-containing H-protein and the lipoamide dehydrogenase (L-protein) of the glycine decarboxylase multienzyme system. Eur J Biochem 267:2890–2898CrossRefPubMedGoogle Scholar
  7. 7.
    Hendrickson WA, Smith JL, Sheriff S (1985) Direct phase determination based on anomalous scattering. Methods Enzymol 115:41–55CrossRefPubMedGoogle Scholar
  8. 8.
    Huang Z, Ruth RD (1998) Laser-electron storage ring. Phys Rev Lett 80:976–979CrossRefGoogle Scholar
  9. 9.
    Jensen A (2007) Optical elements for hard X-ray radiation. Ph.D. Dissertation. University of Copenhagen, DenmarkGoogle Scholar
  10. 10.
    Kabsch W (1988) Automatic indexing of rotation diffraction patterns. J Appl Cryst 21:67–72CrossRefGoogle Scholar
  11. 11.
    Kikuchi G, Motokawa Y, Toshida T, Hiraga K (2008) Glycine cleavage system: reaction mechanism, pysiological significance, and hyperglycinemia. Proc Jpn Acad Ser B 84:246–262CrossRefGoogle Scholar
  12. 12.
    Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr Sect D Biol Crystallogr 60:2256–2658CrossRefGoogle Scholar
  13. 13.
    Loewen R (2003) A compact light source: design and technical feasibility study of a laser electron storage ring x-ray source. Ph.D. Dissertation. SLAC/Stanford University, SLAC-R-632Google Scholar
  14. 14.
    Macherel DBJ, Forest E, Fuare M, Cohen-Addad C, Douce R (1996) Expression, lypoylation and structure determination of recombinant pea H-protein in Eschericia coli. Eur J Biochem 236:27–33CrossRefPubMedGoogle Scholar
  15. 15.
    Mccoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Cryst 40:658–674CrossRefGoogle Scholar
  16. 16.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecuar structures by the maximum-likelihood method. Acta Crystallogr Sect D Biol Crystallogr 53:240–255CrossRefGoogle Scholar
  17. 17.
    Nakai T, Ishijima J, Masui R, Kuramitsu S, Kamiya N (2003) Structure of thermus thermophilus HB8 H-protein of the glycine-cleavage system, resolved by a six-dimensional molecular-replacement method. Acta Crystallogr Sect D Biol Crystallogr 59:1610–1618CrossRefGoogle Scholar
  18. 18.
    Newman J, Egan D, Walter TS, Meged R, Berry I, Ben Jelloul M, Stuart DI, Perrakis A (2005) Towards rationalization of crystallization screening for small- to medium-sized academic larboartories: the PACT/JCSG + strategy. Acta Crystallogr Sect D Biol Crystallogr 61:1426–1431CrossRefGoogle Scholar
  19. 19.
    Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326CrossRefGoogle Scholar
  20. 20.
    Pares S, Cohen-Addad C, Sieker L, Neuburger M, Douce R (1994) X-ray structure determination at 2.6AA resolution of a lipoate-containing protein: The H-protein of the glycine decarboxylase complex from pea leaves. Proc Natl Acad Sci USA 91:4850–4853CrossRefPubMedGoogle Scholar
  21. 21.
    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry EF, Brönnimann C, Grünzweig C, David C (2008) Hard-X-ray dark-field imaging using a grating interferometer. Nat Mater 7:134–137CrossRefPubMedGoogle Scholar
  22. 22.
    Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jan Abendroth
    • 1
  • Michael S. McCormick
    • 2
  • Thomas E. Edwards
    • 1
  • Bart Staker
    • 1
  • Roderick Loewen
    • 3
  • Martin Gifford
    • 3
  • Jeff Rifkin
    • 3
  • Chad Mayer
    • 4
  • Wenjin Guo
    • 4
  • Yang Zhang
    • 4
  • Peter Myler
    • 4
  • Angela Kelley
    • 5
  • Erwin Analau
    • 5
  • Stephen Nakazawa Hewitt
    • 5
  • Alberto J. Napuli
    • 5
  • Peter Kuhn
    • 2
  • Ronald D. Ruth
    • 3
    • 6
  • Lance J. Stewart
    • 1
  1. 1.Emerald BioStructuresBainbridge IslandUSA
  2. 2.The Scripps Research InstituteLa JollaUSA
  3. 3.Lyncean TechnologiesPalo AltoUSA
  4. 4.Seattle Biomedical Research InstituteSeattleUSA
  5. 5.University of WashingtonSeattleUSA
  6. 6.SLAC National Accelerator LaboratoryStanfordUSA

Personalised recommendations