Efficient condensed-phase production of perdeuterated soluble and membrane proteins

  • William M. Schneider
  • Yuefeng Tang
  • S. Thangminlal Vaiphei
  • Lili Mao
  • Melissa Maglaqui
  • Masayori Inouye
  • Monica J. Roth
  • Gaetano T. Montelione


Protein perdeuteration approaches have tremendous value in protein NMR studies, but are limited by the high cost of perdeuterated media. Here, we demonstrate that E. coli cultures expressing proteins using either the condensed single protein production method (cSPP), or conventional pET expression plasmids, can be condensed prior to protein expression, thereby providing high-quality 2H, 13C, 15N-enriched protein samples at 2.5–10% the cost of traditional methods. As an example of the value of such inexpensively-produced perdeuterated proteins, we produced 2H, 13C, 15N-enriched E. coli cold shock protein A (CspA) and EnvZb in 40× condensed phase media, and obtained NMR spectra suitable for 3D structure determination. The cSPP system was also used to produce 2H, 13C, 15N-enriched E. coli plasma membrane protein YaiZ and outer membrane protein X (OmpX) in condensed phase. NMR spectra can be obtained for these membrane proteins produced in the cSPP system following simple detergent extraction, without extensive purification or reconstitution. This allows a membrane protein’s structural and functional properties to be characterized prior to reconstitution, or as a probe of the effects of subsequent purification steps on the structural integrity of membrane proteins. We also provide a standardized protocol for production of perdeuterated proteins using the cSPP system. The 10–40 fold reduction in costs of fermentation media provided by using a condensed culture system opens the door to many new applications for perdeuterated proteins in spectroscopic and crystallographic studies.


Protein expression in E. coli Perdeuteration Protein NMR Single protein production system (SPP) Triple resonance NMR 



We thank Drs. Rajeswari Mani and Rong Xiao for helpful discussions and comments on the manuscript. This work was supported by the National Institutes of General Medical Science Protein Structure Initiative program, grants U54 GM074958 (to G.T.M and M.I.) and U54 GM75026 (G.T.M. and M.I.), and by grant RO1 GM070837 (to M.J.R.). W.M.S. was supported by NIH training grants T32 GM08360 and T32 A1007403.

Supplementary material

10969_2010_9083_MOESM1_ESM.pdf (420 kb)
Supplementary material 1 (PDF 420 kb)


  1. 1.
    Arora A, Abildgraad F, Bushweller JH, Tamm LK (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol 8:334–338CrossRefPubMedGoogle Scholar
  2. 2.
    Crespi HL, Katz JJ (1969) High resolution proton magnetic resonance studies of fully deuterated and isotope hybrid proteins. Nature 224:560–562CrossRefPubMedGoogle Scholar
  3. 3.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefPubMedGoogle Scholar
  4. 4.
    Fernandez C, Adeishvili K, Wuthrich K (2001) Transverse relaxation-optimized NR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine miscelles. Proc Natl Acad Sci USA 98:2358–2363CrossRefPubMedGoogle Scholar
  5. 5.
    Fernandez C, Hilty C, Wider G, Guntert P, Wuthrich K (2004) NMR structure of the integral membrane protein OmpX. J Mol Biol 336:1211–1221CrossRefPubMedGoogle Scholar
  6. 6.
    Filip C, Fletcher G, Wulff JL, Earhart CF (1973) Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sacrosinate. J Bacteriol 115:717–722PubMedGoogle Scholar
  7. 7.
    Gardner KH, Kay LE (1997) Production and incorporation of 15N, 13C, 2H (1H-δ1 Methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119:7599–7600CrossRefGoogle Scholar
  8. 8.
    Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406CrossRefPubMedGoogle Scholar
  9. 9.
    Goddard TD, Kneller DG (2008) SPARKY 3. University of California, San FranciscoGoogle Scholar
  10. 10.
    Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374CrossRefPubMedGoogle Scholar
  11. 11.
    Grzesiek S, Anglister J, Ren H, Bax A (1993) 13C line narrowing by 2H decoupling in 2H/13C/15N enriched proteins. Application to triple resonance 4D J connectivity of sequential amides. J Am Chem Soc 115:4369–4370CrossRefGoogle Scholar
  12. 12.
    Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210CrossRefPubMedGoogle Scholar
  13. 13.
    Huang YJ, Hang D, Lu LJ, Tong L, Gerstein MB, Montelione GT (2008) Targeting the human cancer pathway protein interaction network by structural genomics. Mol Cell Proteomics 7:2048–2060CrossRefPubMedGoogle Scholar
  14. 14.
    Jansson M, Li Y-C, Jendeberg L, Anderson S, Montelione GT, Nilsson B (1996) High-level production of uniformly 15N- and 13C-enriched fusion proteins in Escherichia coli. J Biomol NMR 7:131–141CrossRefPubMedGoogle Scholar
  15. 15.
    Kossiakoff AA, Spencer SA (1981) Direct determination of the protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the seriene proteases: neutron structure of trypsin. Biochemistry 20:6462–6474CrossRefPubMedGoogle Scholar
  16. 16.
    LeMaster DM, Richards FM (1988) NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteration. Biochemistry 27:142–150CrossRefPubMedGoogle Scholar
  17. 17.
    Markley JL, Putter I, Jardetzky O (1968) High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science 161:1249–1251CrossRefPubMedGoogle Scholar
  18. 18.
    Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75CrossRefPubMedGoogle Scholar
  19. 19.
    Moseley HN, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Methods Enzymol 339:91–108CrossRefPubMedGoogle Scholar
  20. 20.
    Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenua to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371CrossRefPubMedGoogle Scholar
  21. 21.
    Rajesh S, Neitlispach D, Nakayama H, Takio K, Laue ED, Shibata T, Ito Y (2003) A novel method for the biosynthesis of deuterated proteins with selective protonation at the aromatic rings of Phe, Tyr, and Trp. J Biomol NMR 27:81–86CrossRefPubMedGoogle Scholar
  22. 22.
    Rosen MK, Gardner KH, Willis RC, Parris WE, Pawson T, Kay LE (1996) Selective methyl group protonation of perdeuterated proteins. J Mol Biol 263:627–636CrossRefPubMedGoogle Scholar
  23. 23.
    Schneider WM, Inouye M, Montelione GT, Roth MJ (2009) Independently inducible system of gene expression for condensed single protein production (cSPP) suitable for high efficiency isotope enrichment. J Struct Funct Genomics 10:219–225CrossRefPubMedGoogle Scholar
  24. 24.
    Sivashanmugam A, Murray V, Cui C, Zhang Y, Wang J, Li Q (2009) Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci 18:936–948CrossRefPubMedGoogle Scholar
  25. 25.
    Suzuki M, Mao L, Inouye M (2007) Single protein production (SPP) system in Escherichia coli. Nat Protoc 2:1802–1810CrossRefPubMedGoogle Scholar
  26. 26.
    Suzuki M, Rohini R, Zheng H, Woychik N, Inouye M (2006) Bacterial bioreactors for high yield production of recombinant protein. J Biol Chem 281:37559–37565CrossRefPubMedGoogle Scholar
  27. 27.
    Suzuki M, Zhang J, Liu M, Woychik NA, Inouye M (2005) Single protein production in living cells facilitated by an mRNA interferase. Mol Cell 18:253–261CrossRefPubMedGoogle Scholar
  28. 28.
    Venters RA, Huang C-C, Farmer BT II, Trolard R, Spicer LD, Fierke CA (1995) High-level 2H/13C/15N labeling of proteins for NMR studies. J Biomol NMR 5:339–344CrossRefPubMedGoogle Scholar
  29. 29.
    Venters RA, Metzler WJ, Spicer LD, Mueller L, Farmer BT II (1995) Use of 1HN-1HN NOEs to determine protein global folds in perdeuterated proteins. J Am Chem Soc 117:9592–9593CrossRefGoogle Scholar
  30. 30.
    Zheng D, Huang YJ, Moseley HNB, Xiao R, Aramini J, Swapna GVT, Montelione GT (2003) Automated protein fold determination using a minimal NMR constraint strategy. Protein Sci 12:1232–1246CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • William M. Schneider
    • 1
  • Yuefeng Tang
    • 2
  • S. Thangminlal Vaiphei
    • 1
    • 2
  • Lili Mao
    • 1
    • 2
  • Melissa Maglaqui
    • 2
  • Masayori Inouye
    • 1
    • 2
  • Monica J. Roth
    • 1
  • Gaetano T. Montelione
    • 1
    • 2
  1. 1.Department of Biochemistry, Robert Wood Johnson Medical SchoolUniversity of Medicine and Dentistry of New JerseyPiscatawayUSA
  2. 2.Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics ConsortiumRutgers UniversityPiscatawayUSA

Personalised recommendations