Journal of Structural and Functional Genomics

, Volume 10, Issue 3, pp 227–232 | Cite as

Clean absorption mode NMR data acquisition based on time-proportional phase incrementation

Article

Abstract

Clean absorption mode NMR data acquisition is presented based on mirrored time domain sampling and widely used time-proportional phase incrementation (TPPI) for quadrature detection. The resulting NMR spectra are devoid of dispersive frequency domain peak components. Those peak components exacerbate peak identification and shift peak maxima, and thus impede automated spectral analysis. The new approach is also of unique value for obtaining clean absorption mode reduced-dimensionality projection NMR spectra, which can rapidly provide high-dimensional spectral information for high-throughput NMR structure determination.

Keywords

Clean absorption mode NMR TPPI GFT projection NMR RD projection NMR 

Abbreviations

FT

Fourier transformation

GFT

G-matrix FT

NESG

Northeast Structural Genomics Consortium

NMR

Nuclear magnetic resonance

PSI

Protein structure initiative

RD

Reduced-dimensionality

SG

Structural genomics

TPPI

Time-proportional phase incrementation

Supplementary material

10969_2009_9066_MOESM1_ESM.doc (1.9 mb)
Supplementary material 1 (DOC 1979 kb)

References

  1. 1.
    Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skeleton NJ (2007) Protein NMR spectroscopy. Academic Press, San DiegoGoogle Scholar
  3. 3.
    Szyperski T (2008) On NMR-based structural proteomics. In: Sussman JL, Silman I (eds) Structural proteomics. World Scientific, HasensackGoogle Scholar
  4. 4.
    Montelione GT, Arrowsmith C, Girvin ME, Kennedy MA, Markley JL, Powers R, Prestegard JH, Szyperski T (2009) Unique opportunities for NMR methods in structural genomics. J Struct Funct Genomics 10:101–106. doi:10.1007/s10969-009-9064-0 PubMedCrossRefGoogle Scholar
  5. 5.
    Huang YJ, Moseley HN, Baran MC, Arrowsmith C, Powers R, Tejero R, Szyperski T, Montelione GT (2005) An integrated platform for automated analysis of protein NMR structures. Methods Enzymol 394:111–141. doi:10.1016/S0076-6879(05)94005-6 PubMedCrossRefGoogle Scholar
  6. 6.
    Moseley HN, Riaz N, Aramini JM, Szyperski T, Montelione GT (2004) A generalized approach to automated NMR peak list editing: application to reduced dimensionality triple resonance spectra. J Magn Reson 170:263–277. doi:10.1016/j.jmr.2004.06.015 PubMedCrossRefGoogle Scholar
  7. 7.
    Wu Y, Ghosh A, Szyperski T (2009) Clean absorption-mode NMR data acquisition. Angew Chem Int Ed 48:1479–1483. doi:10.1002/anie.200804927 CrossRefGoogle Scholar
  8. 8.
    Redfield AG, Kunz SD (1975) Quadrature Fourier NMR detection: simple multiplex for dual detection and discussion. J Magn Reson 19:250–254Google Scholar
  9. 9.
    Drobny G, Pines A, Sinton S, Weitekamp DP, Wemmer D (1979) Fourier transform multiple quantum nuclear magnetic resonance. Faraday Div Nucl Magn Reson Spectrosc 13:49–55Google Scholar
  10. 10.
    Bodenhausen G, Vold RL, Vold RR (1980) Multiple quantum spin-echo spectroscopy. J Magn Reson 37:93–106Google Scholar
  11. 11.
    Marion D, Wüthrich K (1983) Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurement of 1H–1H spin–spin coupling constants in proteins. Biochem Biophys Res Commun 113:967–974. doi:10.1016/0006-291X(83)91093-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993) Reduced dimensionality in triple resonance NMR experiments. J Am Chem Soc 115:9307–9308. doi:10.1021/ja00073a064 CrossRefGoogle Scholar
  13. 13.
    Szyperski T, Yeh DC, Sukumaran DK, Moseley HNB, Montelione GT (2002) Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Proc Natl Acad Sci USA 99:8009–8014. doi:10.1073/pnas.122224599 PubMedCrossRefGoogle Scholar
  14. 14.
    Szyperski T, Braun D, Fernandez C, Bartels C, Wüthrich K (1995) A novel reduced-dimensionality triple resonance experiment for efficient polypeptide backbone assignment, 3D COHNNCA. J Magn Reson B 108:197–203. doi:10.1006/jmrb.1995.1124 CrossRefGoogle Scholar
  15. 15.
    Brutscher B, Cordier F, Simorre JP, Caffrey MS, Marion D (1995) High-resolution 3D HNCOCA experiment applied to a 28-kDa paramagnetic protein. J Biomol NMR 5:202–206. doi:10.1007/BF00208811 CrossRefGoogle Scholar
  16. 16.
    Szyperski T, Banecki B, Braun D, Glaser RW (1998) Sequential assignment of medium-sized 15N/13C-labeled proteins with projected 4D triple resonance NMR experiments. J Biomol NMR 11:387–405. doi:10.1023/A:1008287921055 CrossRefGoogle Scholar
  17. 17.
    Ding K, Gronenborn AM (2002) Novel 2D triple-resonance NMR experiments for sequential resonance assignments of proteins. J Magn Reson 156:262–268. doi:10.1006/jmre.2002.2537 PubMedCrossRefGoogle Scholar
  18. 18.
    Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional spectral information. J Am Chem Soc 125:1385–1393. doi:10.1021/ja028197d PubMedCrossRefGoogle Scholar
  19. 19.
    Atreya HS, Garcia E, Shen Y, Szyperski T (2007) J-GFT NMR for precise measurement of mutually correlated nuclear spin–spin couplings. J Am Chem Soc 129:680–692. doi:10.1021/ja066586s PubMedCrossRefGoogle Scholar
  20. 20.
    Atreya HS, Szyperski T (2004) G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment. Proc Natl Acad Sci USA 101:9642–9647. doi:10.1073/pnas.0403529101 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of ChemistryThe State University of New York at BuffaloBuffaloUSA

Personalised recommendations