Protein chaperones Q8ZP25_SALTY from Salmonella typhimurium and HYAE_ECOLI from Escherichia coli exhibit thioredoxin-like structures despite lack of canonical thioredoxin active site sequence motif

  • David Parish
  • Jordi Benach
  • Goahua Liu
  • Kiran Kumar Singarapu
  • Rong Xiao
  • Thomas Acton
  • Min Su
  • Sonal Bansal
  • James H. Prestegard
  • John Hunt
  • Gaetano T. Montelione
  • Thomas Szyperski
Article

Abstract

The structure of the 142-residue protein Q8ZP25_SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE_ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247–D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the ‘thioredoxin-like clan’. However, protein HYAE_ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE_ECOLI was previously classified as a [NiFe] hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.

Keywords

Chaperones GFT NMR HYAE_ECOLI Q8ZP25_SALTY Structural genomics Thioredoxin 

Abbreviations

NESG

Northeast Structural Genomics Consortium

NMR

Nuclear magnetic resonance

NSLF

National synchrotron light source

PDB

Protein data bank

RDC

Residual dipolar coupling

PSVS

Protein structure validation suite

References

  1. 1.
    Finn RD, Mistry J, Shuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Nucleic Acids Res 34:D247–D251. doi:10.1093/nar/gkj149 PubMedCrossRefGoogle Scholar
  2. 2.
    Dubini A, Sargent F (2003) FEBS Lett 549:141–146. doi:10.1016/S0014-5793(03)00802-0 PubMedCrossRefGoogle Scholar
  3. 3.
    McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterson R, Wilson RK (2001) Nature 413:852–856. doi:10.1038/35101614 PubMedCrossRefGoogle Scholar
  4. 4.
    Liu GH, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton T, Arrowsmith C, Montelione G, Szyperski T (2005) Proc Natl Acad Sci USA 102:10487–10492. doi:10.1073/pnas.0504338102 PubMedCrossRefGoogle Scholar
  5. 5.
    Acton TB, Gunsalus KC, Xiao R, Ma LC, Aramini JM, Baran MC, Chiang YW, Climent T, Cooper B, Denissova N, Douglas SM, Everett JK, Ho CK, Macapagal D, Paranji RK, Shastry R, Shih LJ, Swapna GVT, Wilson M, Wu MJ, Gerstein M, Inouye M, Hunt JF, Montelione GT (2005) Methods Enzymol 394:210–243. doi:10.1016/S0076-6879(05)94008-1 PubMedCrossRefGoogle Scholar
  6. 6.
    Atreya HS, Szyperski T (2004) Proc Natl Acad Sci USA 101:9642–9647. doi:10.1073/pnas.0403529101 PubMedCrossRefGoogle Scholar
  7. 7.
    Hansen MR, Hanson P, Pardi A (2000) Filamentous bacteriophage for aligning RNA, DNA, and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions, Rna-Ligand Interactions Pt A. Academic Press Inc, San Diego, pp 220–240Google Scholar
  8. 8.
    Kim S, Szyperski T (2003) J Am Chem Soc 125:1385–1393. doi:10.1021/ja028197d PubMedCrossRefGoogle Scholar
  9. 9.
    Shen Y, Atreya HS, Liu GH, Szyperski T (2005) J Am Chem Soc 127:9085–9099. doi:10.1021/ja0501870 PubMedCrossRefGoogle Scholar
  10. 10.
    Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (2007) Protein NMR Spectroscopy. Academic Press, San DiegoGoogle Scholar
  11. 11.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) J Biomol NMR 6:277–293. doi:10.1007/BF00197809 PubMedCrossRefGoogle Scholar
  12. 12.
    Bartels C, Xia T, Billeter M, Guntert P, Wuthrich K (1995) J Biomol NMR 6:1–10. doi:10.1007/BF00417486 CrossRefGoogle Scholar
  13. 13.
    Zimmerman DE, Kulikowski CA, Huang YP, Feng WQ, Tashiro M, Shimotakahara S, Chien CY, Powers R, Montelione GT (1997) J Mol Biol 269:592–610. doi:10.1006/jmbi.1997.1052 PubMedCrossRefGoogle Scholar
  14. 14.
    Herrmann T, Güntert P, Wüthrich K (2002) J Mol Biol 319:209–227. doi:10.1016/S0022-2836(02)00241-3 PubMedCrossRefGoogle Scholar
  15. 15.
    Güntert P, Mumenthaler C, Wüthrich K (1997) J Mol Biol 273:283–298. doi:10.1006/jmbi.1997.1284 PubMedCrossRefGoogle Scholar
  16. 16.
    Huang YJ, Moseley H, Baran MC, Arrowsmith C, Powers R, Tejero R, Szyperski T, Montelione G (2005) Methods Enzymol 394:111–141. doi:10.1016/S0076-6879(05)94005-6 PubMedCrossRefGoogle Scholar
  17. 17.
    Valafar H, Prestegard JH (2004) J Magn Reson 167:228–241. doi:10.1016/j.jmr.2003.12.012 PubMedCrossRefGoogle Scholar
  18. 18.
    Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) J Magn Reson 160:65–73. doi:10.1016/S1090-7807(02)00014-9 PubMedCrossRefGoogle Scholar
  19. 19.
    Schwieters CD, Kuszewski J, Clore GM (2006) Prog Nucl Magn Reson Spectrosc 48:47–62. doi:10.1016/j.pnmrs.2005.10.001 CrossRefGoogle Scholar
  20. 20.
    Linge JP, Williams MA, Spronk CA, Bonvin AM, Nilges M (2003) Proteins 50:496–506. doi:10.1002/prot.10299 PubMedCrossRefGoogle Scholar
  21. 21.
    Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D Biol Crystallogr 54:905–921. doi:10.1107/S0907444998003254 PubMedCrossRefGoogle Scholar
  22. 22.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235 PubMedCrossRefGoogle Scholar
  23. 23.
    Bhattacharya A, Tejero R, Montelione G (2007) Proteins 66:778–795. doi:10.1002/prot.21165 PubMedCrossRefGoogle Scholar
  24. 24.
    Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326. doi:10.1016/S0076-6879(97)76066-X CrossRefGoogle Scholar
  25. 25.
    Guntert P, Braun W, Wuthrich K (1991) J Mol Biol 217:517–530. doi:10.1016/0022-2836(91)90754-T PubMedCrossRefGoogle Scholar
  26. 26.
    Neri D, Szyperski T, Otting G, Senn H, Wüthrich K (1989) Biochemistry 28:7510–7516. doi:10.1021/bi00445a003 PubMedCrossRefGoogle Scholar
  27. 27.
    Cornilescu G, Delaglio F, Bax A (1999) J Biomol NMR 13:289–302. doi:10.1023/A:1008392405740 PubMedCrossRefGoogle Scholar
  28. 28.
    Prestegard JH, Bougault CM, Kishore AI (2004) Chem Rev 104:3519–3540. doi:10.1021/cr030419i PubMedCrossRefGoogle Scholar
  29. 29.
    Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Loannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, DE Tolmie , Wenger KR, Yao H, Markley JL (2007) Nucleic Acids Res . doi:10.1093/nar/gkm957 Google Scholar
  30. 30.
    Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) J Biomol NMR 8:477–486. doi:10.1007/BF00228148 PubMedCrossRefGoogle Scholar
  31. 31.
    Word JM, Bateman RC, Presley BK, Lovell SC, Richardson DC (2000) Protein Sci 9:2251–2259PubMedCrossRefGoogle Scholar
  32. 32.
    Huang YJ, Powers R, Montelione G (2005) J Am Chem Soc 127:1665–1674. doi:10.1021/ja047109h PubMedCrossRefGoogle Scholar
  33. 33.
    Matthews BW (1968) J Mol Biol 33:491–497. doi:10.1016/0022-2836(68)90205-2 PubMedCrossRefGoogle Scholar
  34. 34.
    Terwilliger TC, Berendzen J (1999) Acta Crystallogr D Biol Crystallogr 55:849–861. doi:10.1107/S0907444999000839 PubMedCrossRefGoogle Scholar
  35. 35.
    Terwilliger TC (2000) Acta Crystallogr D Biol Crystallogr 56:965–972. doi:10.1107/S0907444900005072 PubMedCrossRefGoogle Scholar
  36. 36.
    Terwilliger TC (2003) Acta Crystallogr D Biol Crystallogr 59:38–44. doi:10.1107/S0907444902018036 PubMedCrossRefGoogle Scholar
  37. 37.
    Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M (1991) Acta Crystallogr A 47:110–119. doi:10.1107/S0108767390010224 PubMedCrossRefGoogle Scholar
  38. 38.
    Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski JMN, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Cryst Sect D 54:905–921. doi:10.1107/S0907444998003254 CrossRefGoogle Scholar
  39. 39.
    Engh R, Huber R (1991) Acta Crystallogr A 47:392–400. doi:10.1107/S0108767391001071 CrossRefGoogle Scholar
  40. 40.
    Drenth J (1994) Principles of protein X-ray crystallography. Springer, New YorkGoogle Scholar
  41. 41.
    Zhang Y, Skolnick J (2005) Nucleic Acids Res 33:2302–2309. doi:10.1093/nar/gki524 PubMedCrossRefGoogle Scholar
  42. 42.
    Holm L, Sander CR (1995) Trends Biochem Sci 20:478–480. doi:10.1016/S0968-0004(00)89105-7 PubMedCrossRefGoogle Scholar
  43. 43.
    Bernhard M, Schwartz E, Rietdorf J, Friedrich B (1996) J Bacteriol 178:4522–4529PubMedGoogle Scholar
  44. 44.
    Glaser F, Pupko T, Paz I, Bell R, Bechor-Shental D, Martz E, Ben-Tal N (2003) Bioinformatics 19:163–164. doi:10.1093/bioinformatics/19.1.163 PubMedCrossRefGoogle Scholar
  45. 45.
    Nicholls A, Sharp KA, Honig B (1991) Proteins 11:281–296. doi:10.1002/prot.340110407 PubMedCrossRefGoogle Scholar
  46. 46.
    Mayrose I, Graur D, Ben-Tal N, Pupko T (2004) Mol Biol Evol 21:1781–1791. doi:10.1093/molbev/msh194 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • David Parish
    • 1
  • Jordi Benach
    • 2
  • Goahua Liu
    • 1
  • Kiran Kumar Singarapu
    • 1
  • Rong Xiao
    • 3
  • Thomas Acton
    • 3
  • Min Su
    • 2
  • Sonal Bansal
    • 4
  • James H. Prestegard
    • 4
  • John Hunt
    • 2
  • Gaetano T. Montelione
    • 3
  • Thomas Szyperski
    • 1
  1. 1.Department of Chemistry, Northeast Structural Genomics ConsortiumThe State University of New York at BuffaloBuffaloUSA
  2. 2.Department of Biological Sciences, Northeast Structural Genomics ConsortiumColumbia UniversityNew YorkUSA
  3. 3.The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics ConsortiumRutgers University and Robert Wood Johnson Medical SchoolPiscatawayUSA
  4. 4.Complex Carbohydrate Research Center and Department of ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations