Structure of SO2946 orphan from Shewanella oneidensis shows “jelly-roll” fold with carbohydrate-binding module



The crystal structure of the uncharacterized protein SO2946 from Shewanella oneidensis MR-1 was determined with single-wavelength anomalous diffraction (SAD) and refined to 2.0 Å resolution. The SO2946 protein consists of a short helical N-terminal domain and a large C-terminal domain with the “jelly-roll” topology. The protein assembles into a propeller consisting of three C-terminal blades arranged around a central core formed by the N-terminal domains. The function of SO2946 could not be inferred from the sequence since the protein represents an orphan with no sequence homologs, but the protein’s structure bears a fold similar to that of proteins containing carbohydrate-binding modules. Features such as fold conservation, the presence of a conserved groove and a metal binding region are indicative that SO2946 may be an enzyme and could be involved in binding carbohydrate molecules.


Jelly-roll topology Carbohydrate-binding modules Orphan protein Magnesium binding SAD phasing Singleton 


  1. 1.
    Bouhenni R, Gehrke A, Saffarini D (2005) Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon. Appl Environ Microbiol 71:4935–4937PubMedCrossRefGoogle Scholar
  2. 2.
    Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B et al (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123PubMedCrossRefGoogle Scholar
  3. 3.
    Venkateswaran K, Dollhopf ME, Aller R, Stackebrandt E, Nealson KH (1998) Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 48(Pt 3):965–972PubMedCrossRefGoogle Scholar
  4. 4.
    Walsh MA, Dementieva I, Evans G, Sanishvili R, Joachimiak A (1999) Taking MAD to the extreme: ultrafast protein structure determination. Acta Crystallogr D Biol Crystallogr 55(Pt 6):1168–1173PubMedCrossRefGoogle Scholar
  5. 5.
    Donnelly MI, Zhou M, Millard CS, Clancy S, Stols L, Eschenfeldt WH, Collart FR, Joachimiak A (2006) An expression vector tailored for large-scale, high-throughput purification of recombinant proteins. Protein Expr Purif 47(2):446–454PubMedCrossRefGoogle Scholar
  6. 6.
    van den Ent F, Lockhart A, Kendrick-Jones J, Löwe J (1999) Crystal structure of the N-terminal domain of MukB: a protein involved in chromosome partitioning. Structure 7(10):1181–1187PubMedCrossRefGoogle Scholar
  7. 7.
    Kim Y, Dementieva I, Zhou M, Wu R, Lezondra L, Quartey P, Joachimiak G, Korolev O, Li H, Joachimiak A (2004) Automation of protein purification for structural genomics. J Struct Funct Genomics 5:111–118PubMedCrossRefGoogle Scholar
  8. 8.
    Nocek B, Chang C, Li H, Lezondra L, Holzle D, Collart F, Joachimiak A (2005) Crystal structures of delta1-pyrroline-5-carboxylate reductase from human pathogens Neisseria meningitides and Streptococcus pyogenes. J Mol Biol 354:91–106PubMedCrossRefGoogle Scholar
  9. 9.
    Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallogr Pt A 276:307–326CrossRefGoogle Scholar
  10. 10.
    Minor W, Cymborowski M, Otwinowski Z, Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr 62:859–866PubMedCrossRefGoogle Scholar
  11. 11.
    Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 58:1772–1779PubMedCrossRefGoogle Scholar
  12. 12.
    Terwilliger TC (2003) SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol 374:22–37PubMedCrossRefGoogle Scholar
  13. 13.
    Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6:458–463PubMedCrossRefGoogle Scholar
  14. 14.
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132PubMedCrossRefGoogle Scholar
  15. 15.
    Bailey (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763Google Scholar
  16. 16.
    Painter J, Merritt EA (2005) A molecular viewer for the analysis of TLS rigid-body motion in macromolecules. Acta Crystallogr D Biol Crystallogr 61:465–471PubMedCrossRefGoogle Scholar
  17. 17.
    Lovell SC, Davis IW, Arendall WBIII, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 15:437–450CrossRefGoogle Scholar
  18. 18.
    Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60:2256–2268PubMedCrossRefGoogle Scholar
  19. 19.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  20. 20.
    Laskowski RA, Watson JD, Thornton JM (2005) Protein function prediction using local 3D templates. J Mol Biol 351:614–626PubMedCrossRefGoogle Scholar
  21. 21.
    Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol 233:123–138PubMedCrossRefGoogle Scholar
  22. 22.
    Kulkarni KA, Sinha S, Katiyar S, Surolia A, Vijayan M, Suguna K (2005) Structural basis for the specificity of basic winged bean lectin for the Tn-antigen: a crystallographic, thermodynamic and modelling study. FEBS Lett 579:6775–6780PubMedCrossRefGoogle Scholar
  23. 23.
    Osawa T, Matsubara Y, Muramatsu T, Kimura M, Kakuta Y (2005) Crystal structure of the alginate (poly alpha-l-guluronate) lyase from Corynebacterium sp. at 1.2 A resolution. J Mol Biol 345:1111–1118PubMedCrossRefGoogle Scholar
  24. 24.
    Reeke GN Jr, Becker JW (1986) Three-dimensional structure of favin: saccharide binding-cyclic permutation in leguminous lectins. Science 234:1108–1111PubMedCrossRefGoogle Scholar
  25. 25.
    Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, Fushinobu S (2004) Crystal structure of a family 54 alpha-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J Biol Chem 279:44907–44914PubMedCrossRefGoogle Scholar
  26. 26.
    Kundhavai Natchiar S, Arockia Jeyaprakash A, Ramya TN, Thomas CJ, Suguna K, Surolia A, Vijayan M (2004) Structural plasticity of peanut lectin: an X-ray analysis involving variation in pH, ligand binding and crystal structure. Acta Crystallogr D Biol Crystallogr 60(pt 2):211–219PubMedCrossRefGoogle Scholar
  27. 27.
    Bompard-Gilles C, Rousseau P, Rouge P, Payan F (1996) Substrate mimicry in the active center of a mammalian alpha-amylase: structural analysis of an enzyme-inhibitor complex. Structure 4:1441–1452PubMedCrossRefGoogle Scholar
  28. 28.
    Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP (1989) Cellulase families revealed by hydrophobic cluster analysis. Gene 81:83–95PubMedCrossRefGoogle Scholar
  29. 29.
    Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781PubMedCrossRefGoogle Scholar
  30. 30.
    Carvalho AL, Goyal A, Prates JA, Bolam DN, Gilbert HJ, Pires VM, Ferreira LM, Planas A, Romao MJ, Fontes CM (2004) The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1, 4- and beta-1, 3-1, 4-mixed linked glucans at a single binding site. J Biol Chem 279:34785–34793PubMedCrossRefGoogle Scholar
  31. 31.
    Notenboom V, Boraston AB, Chiu P, Freelove AC, Kilburn DG, Rose DR (2001) Recognition of cello-oligosaccharides by a family 17 carbohydrate-binding module: an X-ray crystallographic, thermodynamic and mutagenic study. J Mol Biol 314:797–806PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • B. Nocek
    • 1
  • L. Bigelow
    • 1
  • J. Abdullah
    • 1
  • A. Joachimiak
    • 1
    • 2
  1. 1.Midwest Center for Structural Genomics and Structural Biology Center, Biosciences DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoUSA

Personalised recommendations