Journal of Structural and Functional Genomics

, Volume 8, Issue 4, pp 145–152 | Cite as

Automated robotic harvesting of protein crystals—addressing a critical bottleneck or instrumentation overkill?

  • Robert Viola
  • Peter Carman
  • Jace Walsh
  • Daniel Frankel
  • Bernhard Rupp


One of the critical steps in high throughput crystallography that so far has evaded automation is the actual harvesting of the delicate crystals from the mother liquor in which they are growing. The late-stage operation of harvesting is presently a most risky and loss-intensive procedure, compounded by its tight integration with the critical steps of cryo-protection and cryo-quenching. Recent advances in micromanipulation robotics and micro-fabrication have made it possible to seriously consider automation of protein crystal harvesting. Based on the experience gained during the development of an operator-assisted (and now operator-assisting) universal micromanipulation robot (UMR) prototype, we discuss the challenges ahead for the design of a fully autonomous, integrated system capable of the reliable harvesting of protein microcrystals. Experience from participation in NIH structural genomics projects and feedback from bottleneck workshops indicates that genuine demand exists in the high throughput community as well as in pharmaceutical production pipelines, justifying the effort and resources to develop autonomous harvesting robotics.


Robotic protein crystal harvesting Cryo-crystallography Flash cooling Hyper-quenching Universal micromanipulation robot 


  1. 1.
    Rees DC, Congreve M, Murray CW, Carr R (2004) Nat Rev Drug Discov 3:660–672PubMedCrossRefGoogle Scholar
  2. 2.
    Congreve M, Murray CW, Blundell TL (2005) Drug Disc Today 10:895–907CrossRefGoogle Scholar
  3. 3.
    Karain WI, Bourenkov GP, Blume H, Bartunik HD (2002) Acta Crystallogr D58:1519–1522Google Scholar
  4. 4.
    Snell G, Cork C, Nordmeyer R, Cornell E, Meigs G, Yegian D, Jaklevic J, Jin J, Stevens RC, Earnest TE (2004) Structure 12:1–12CrossRefGoogle Scholar
  5. 5.
    Pflugrath JW (2004) Methods 34:415–423PubMedCrossRefGoogle Scholar
  6. 6.
    Beteva A, Cipriani F, Cusack S, Delageniere S, Gabadinho J, Gordon EJ, Guijarro M, Hall DR, Larsen S, Launer L, Lavault CB, Leonard GA, Mairs T, McCarthy A, McCarthy J, Meyer J, Mitchell E, Monaco S, Nurizzo D, Pernot P, Pieritz R, Ravelli RG, Rey V, Shepard W, Spruce D, Stuart DI, Svensson O, Theveneau P, Thibault X, Turkenburg J, Walsh M, McSweeney SM (2006) Acta Crystallogr D62:1162–1169Google Scholar
  7. 7.
    Rosenbaum G, Alkire R, Evans G, Rotella FJ, Lazarski K, Zhang R, Ginell SL, Duke N, Naday I, Lazarz J, Molitsky MJ, Keefe J, Gonczy J, Rock L, Sanishvili R, Walsh MA, Westbrook E, Joachimiak A (2006) J Synchr Rad 13:30–45CrossRefGoogle Scholar
  8. 8.
    Hansen C, Quake SR (2003) Curr Opin Struct Biol 13:538–544PubMedCrossRefGoogle Scholar
  9. 9.
    Zheng B, Gerdts CJ, Ismagilov RF (2005) Curr Opin Struct Biol 15:548–555PubMedCrossRefGoogle Scholar
  10. 10.
    Warkentin M, Berejnov V, Husseini NS, Thorne RE (2006) J Appl Crystallogr 39:805–811CrossRefGoogle Scholar
  11. 11.
    Viola R, Carman P, Walsh J, Miller E, Benning M, Frankel D, McPherson A, Cudney B, Rupp B (2007) J Appl Cryst 40:539–545CrossRefGoogle Scholar
  12. 12.
    Thorne RE, Stum Z, Kmetko J, O’Neill K, Gillilan R (2003) J Appl Crystallogr 36:1455–1460CrossRefGoogle Scholar
  13. 13.
    Gittleman MM, Hunter RC, Smith NL, Johnston AP (1999) US Patent 6,417,007Google Scholar
  14. 14.
    Hiraki M, Kato R, Yamada Y, Matsugaki N, Igarashi N, Wakatsuki S (2005) Acta Crystallogr A61:C149–C150Google Scholar
  15. 15.
    Chen W, Peddi A, Zheng YF, Caffrey M (2004) In: Intelligent control and automation, Proc. 5th World Congress, Hangzhou, P.R. China, pp 4650–4655Google Scholar
  16. 16.
    Garman E (1999) Acta Crystallogr D55:1641–1653Google Scholar
  17. 17.
    Nave C, Garman E (2005) J Synchr Rad 12:257–260CrossRefGoogle Scholar
  18. 18.
    Bodenstaff ER, Hoedemaker FJ, Kuil EM, deVrind HPM, Abrahams JP (2002) Acta Crystallogr D59:1901–1906Google Scholar
  19. 19.
    Rupp B (2003) Acc Chem Res 36:173–181PubMedCrossRefGoogle Scholar
  20. 20.
    Rupp B (2006) In: Crystallization strategies for structural genomics. International University Line, San DiegoGoogle Scholar
  21. 21.
    Chen Y, McInroy JE (2004) IEEE Trans Control Systems Technol 12:413–421CrossRefGoogle Scholar
  22. 22.
    Christian AT, Segelke BW, Toppani D, Rupp B (2007) US Patent 7,227,983Google Scholar
  23. 23.
    Rupp B, Segelke BW, Krupka HI, Lekin TP, Schafer J, Zemla A, Toppani D, Snell G, Earnest TE (2002) Acta Crystallogr D58:1514–1518Google Scholar
  24. 24.
    Wright C, Barrett SF, Welch AJ (2006) SPIE J Biomed Opt 11:1–12Google Scholar
  25. 25.
    Barrett SF, Wright CHG, Zwick H, Wilcox M, Rockwell BA, Naess E (2001) SPIE J Elect Imaging 10:1–9Google Scholar
  26. 26.
    Basu M (2002) IEEE Trans Syst Man Cybern C Appl Rev 32:252–260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Robert Viola
    • 1
  • Peter Carman
    • 1
  • Jace Walsh
    • 1
  • Daniel Frankel
    • 2
  • Bernhard Rupp
    • 3
  1. 1.Square One Systems DesignJackson HoleUSA
  2. 2.Bruker AXSMadisonUSA
  3. 3.q.e.d. life science discoveriesLivermoreUSA

Personalised recommendations