Crystal Structure of the Vitamin B12 Biosynthetic Cobaltochelatase, CbiXS, from Archaeoglobus Fulgidus

  • Jiang Yin
  • Linda X. Xu
  • Maia M. Cherney
  • Evelyne Raux-Deery
  • Amanda A. Bindley
  • Alexei Savchenko
  • John R. Walker
  • Marianne E. Cuff
  • Martin J. Warren
  • Michael N. G. James
ORIGINAL PAPER

Abstract

The Archaeoglobus fulgidus gene af0721 encodes CbiXS, a small cobaltochelatase associated with the anaerobic biosynthesis of vitamin B12 (cobalamin). The protein was shown to have activity both in vivo and in vitro, catalyzing the insertion of Co2+ into sirohydrochlorin. The structure of CbiXS was determined in two different crystal forms and was shown to consist of a central mixed β-sheet flanked by four α-helices, one of which originates in the C-terminus of a neighboring molecule. CbiXS is about half the size of other Class II tetrapyrrole chelatases. The overall topography of CbiXS exhibits substantial resemblance to both the N- and C-terminal regions of several members of the Class II metal chelatases involved in tetrapyrrole biosynthesis. Two histidines (His10 and His74), are in similar positions as the catalytic histidine residues in the anaerobic cobaltochelatase CbiK (His145 and His207). In light of the hypothesis that suggests the larger chelatases evolved via gene duplication and fusion from a CbiXS-like enzyme, the structure of AF0721 may represent that of an “ancestral” precursor of class II metal chelatases.

Keywords

Cobalamin (vitamin B12) biosynthesis Tetrapyrrole CbiK CbiX Cobaltochelatase Protein structure evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Use of the Argonne National Laboratory Structural Biology Center beamlines (Beamline 19BM) at the Advanced Photon Source was supported by the US Department of Energy, Office of Energy Research, under Contract No. W-31-109-ENG-38. We wish to thank all members of the SBC at ANL for their help in conducting experiments. This work was supported by National Institutes of Health Grants GM62414-01, the Ontario Research and Development Challenge Fund, grants from the Canadian Institutes of Health Research (CIHR), and the Biotechnology and Biological Sciences Research Council (BBSRC). X-ray diffraction data for crystal form II were collected at the beamline 8.3.1 of the Advanced Light Source (ALS) at Lawrence Berkeley Lab, under an agreement with the Alberta Synchrotron Institute (ASI). The ALS is operated by the Department of Energy and supported by the National Institute of Health. Beamline 8.3.1 is funded by the National Science Foundation, the University of California and Henry Wheeler. The ASI synchrotron access program is supported by grants from the Alberta Science and Research Authority (ASRA), the Alberta Heritage Foundation for Medical Research (AHFMR) and Western Economic Diversification (WED) of the Canadian Government. The authors would like to thank Drs. Ernst Bergmann (ASI), Jonathan Parish (ASI), and James Holton (ALS) for their help in data collection. MNGJ holds a Canada Research Chair in Protein Structure and Function. JY is a recipient of the Izaak Walton Killam Memorial postdoctoral fellowship at the University of Alberta.

Supplementary material

References

  1. 1.
    Raux E, McVeigh T, Peters SE, Leustek T, Warren MJ (1999) Biochem J 338(Pt 3):701–708PubMedCrossRefGoogle Scholar
  2. 2.
    Walker CJ, Willows RD (1997) Biochem J 327(Pt 2):321–333PubMedGoogle Scholar
  3. 3.
    Raux E, Thermes C, Heathcote P, Rambach A, Warren MJ (1997) J Bacteriol 179(10):3202–3212PubMedGoogle Scholar
  4. 4.
    Schubert HL, Raux E, Wilson KS, Warren MJ (1999) Biochemistry 38(33):10660–10669PubMedCrossRefGoogle Scholar
  5. 5.
    Brindley AA, Raux E, Leech HK, Schubert HL, Warren MJ (2003) J Biol Chem 278(25): 22388–22395PubMedCrossRefGoogle Scholar
  6. 6.
    Wu CK, Dailey HA, Rose JP, Burden A, Sellers VM, Wang BC (2001) Nat Struct Biol 8(2):156–160PubMedCrossRefGoogle Scholar
  7. 7.
    Al-Karadaghi S, Hansson M, Nikonov S, Jonsson B, Hederstedt L (1997) Structure 5(11):1501–1510PubMedCrossRefGoogle Scholar
  8. 8.
    Karlberg T, Lecerof D, Gora M, Silvegren G, Labbe-Bois R, Hansson M, Al-Karadaghi S (2002) Biochemistry 41(46): 13499–13506PubMedCrossRefGoogle Scholar
  9. 9.
    van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J (1993) J Mol Biol 229(1):105–124PubMedCrossRefGoogle Scholar
  10. 10.
    Leech HK, Raux E, McLean KJ, Munro AW, Robinson NJ, Borrelly GP, Malten M, Jahn D, Rigby SE, Heathcote P, Warren MJ (2003) J Biol Chem 278(43):41900–41907PubMedCrossRefGoogle Scholar
  11. 11.
    Evans G, Pettifer RF (2001) J Appl Cryst 34:82–86CrossRefGoogle Scholar
  12. 12.
    Westbrook EM, Naday I (1997) Methods Enzymol 276:244–268PubMedGoogle Scholar
  13. 13.
    Pflugrath JW (1999) Acta Crystallogr D Biol Crystallogr 55:1718–1725PubMedCrossRefGoogle Scholar
  14. 14.
    Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326Google Scholar
  15. 15.
    Terwilliger TC, Berendzen J (1999) Acta Crystallogr D Biol Crystallogr 55(Pt 4):849–861PubMedCrossRefGoogle Scholar
  16. 16.
    Morris RJ, Perrakis A, Lamzin VS (2003) Methods Enzymol 374:229–244PubMedCrossRefGoogle Scholar
  17. 17.
    McRee DE (1999) J Struct Biol 125(2–3):156–165PubMedCrossRefGoogle Scholar
  18. 18.
    Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ (1999) Acta Crystallogr D Biol Crystallogr 55(Pt 1):247–255PubMedCrossRefGoogle Scholar
  19. 19.
    Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D Biol Crystallogr 54:905–921PubMedCrossRefGoogle Scholar
  20. 20.
    Cohen GH (1997) J Appl Cryst 30:1160–1161CrossRefGoogle Scholar
  21. 21.
    Gouet P, Courcelle E, Stuart DI, Metoz F (1999) Bioinformatics 15(4):305–308PubMedCrossRefGoogle Scholar
  22. 22.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comp Chem 19:1639–1662CrossRefGoogle Scholar
  23. 23.
    Rossmann MG, Moras D, Olsen KW (1974) Nature 250(463):194–199PubMedCrossRefGoogle Scholar
  24. 24.
    Branden C, Tooze J (1991) In: Introduction to protein structure. Garland Pub., New YorkGoogle Scholar
  25. 25.
    Holm L, Sander C (1996) Science 273(5275):595–603PubMedCrossRefGoogle Scholar
  26. 26.
    Lecerof D, Fodje M, Hansson A, Hansson M, Al-Karadaghi S (2000) J Mol Biol 297(1):221–232PubMedCrossRefGoogle Scholar
  27. 27.
    Gora M, Grzybowska E, Rytka J, Labbe-Bois R (1996) J␣Biol Chem 271(20):11810–11816PubMedCrossRefGoogle Scholar
  28. 28.
    Lecerof D, Fodje MN, Alvarez Leon R, Olsson U, Hansson A, Sigfridsson E, Ryde U, Hansson M, Al-Karadaghi S (2003) J Biol Inorg Chem 8(4):452–458PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Jiang Yin
    • 1
  • Linda X. Xu
    • 2
  • Maia M. Cherney
    • 1
  • Evelyne Raux-Deery
    • 3
  • Amanda A. Bindley
    • 3
  • Alexei Savchenko
    • 2
  • John R. Walker
    • 2
  • Marianne E. Cuff
    • 4
  • Martin J. Warren
    • 3
  • Michael N. G. James
    • 1
    • 5
  1. 1.Group in Protein Structure and Function, Department of BiochemistryUniversity of AlbertaEdmontonCanada
  2. 2.Ontario Centre for Structural ProteomicsC.H. Best Institute, University of TorontoTorontoCanada
  3. 3.Department of BiosciencesUniversity of KentCanterburyUnited Kingdom
  4. 4.Structural Biology Center & Midwest Center for Structural GenomicsBiosciences Division Argonne National LaboratoryArgonneUSA
  5. 5.Alberta Synchrotron InstituteUniversity of AlbertaEdmontonCanada

Personalised recommendations