Journal of Structural and Functional Genomics

, Volume 6, Issue 4, pp 245–257

The crystal structure of Rv0793, a hypothetical monooxygenase from M.␣tuberculosis

  • M. Joanne Lemieux
  • Claire Ference
  • Maia M. Cherney
  • Metian Wang
  • Craig Garen
  • Michael N. G. James
Article

Abstract

Mycobacterium tuberculosis infects millions worldwide. The Structural Genomics Consortium for M. tuberculosis has targeted all genes from this bacterium in hopes of discovering and developing new therapeutic agents. Open reading frame Rv0793 from M. tuberculosis was annotated with an unknown function. The 3-dimensional structure of Rv0793 has been solved to 1.6 Å resolution. Its structure is very similar to that of Streptomyces coelicolor ActVA-Orf6, a monooxygenase that participates in tailoring of polyketide antibiotics in the absence of a cofactor. It is also similar to the recently solved structure of YgiN, a quinol monooxygenase from Escherichia coli. In addition, the structure of Rv0793 is similar to several structures of other proteins with unknown function. These latter structures have been determined recently as a result of structural genomic projects for various bacterial species. In M. tuberculosis, Rv0793 and its homologs may represent a class of monooygenases acting as reactive oxygen species scavengers that are essential for evading host defenses. Since the most prevalent mode of attack by the host defense on M. tuberculosis is by reactive oxygen species and reactive nitrogen species, Rv0793 may provide a novel target to combat infection by M. tuberculosis.

Key words

Mycobacterium tuberculosis, antibiotic biosynthesis monooxygenase quinol monooxygenase X-ray crystallography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    Zahrt, T.C. (2003) Microbes Infect. 5, 159–167PubMedCrossRefGoogle Scholar
  2. 2.
    Terwilliger, T.C. et al. (2003) Tuberculosis (Edinb) 83, 223–249CrossRefGoogle Scholar
  3. 3.
    Kendrew, S.G., Federici, L., Savino, C., Miele, A., Marsh, E.N. and Vallone, B. (2000) Acta Crystallogr. D Biol. Crystallogr. 56(Pt 4), 481–483PubMedCrossRefGoogle Scholar
  4. 4.
    Sciara, G. et al. (2003) EMBO J. 22, 205–215PubMedCrossRefGoogle Scholar
  5. 5.
    Kendrew, S.G., Hopwood, D.A. and Marsh, E.N. (1997) J. Bacteriol. 179, 4305–4310PubMedGoogle Scholar
  6. 6.
    Shen, B. (2003) Curr. Opin. Chem. Biol. 7, 285–295PubMedCrossRefGoogle Scholar
  7. 7.
    Rawlings, B.J. (1999) Nat. Prod. Rep. 16, 425–484PubMedCrossRefGoogle Scholar
  8. 8.
    Hutchinson, C.R. (2003) Proc. Natl. Acad. Sci. USA 100, 3010–3012PubMedCrossRefGoogle Scholar
  9. 9.
    Reed, M.B., Domenech, P., Manca, C., Su, H., Barczak, A.K., Kreiswirth, B.N., Kaplan, G. and Barry, C.E., 3rd (2004). Nature 431, 84–87PubMedCrossRefGoogle Scholar
  10. 10.
    Saxena, P., Yadav, G., Mohanty, D. and Gokhale, R.S. (2003) J. Biol. Chem. 278, 44780–44790PubMedCrossRefGoogle Scholar
  11. 11.
    Adams, M.A. and Jia, Z. (2005) J. Biol. Chem. 208, 8358–8363Google Scholar
  12. 12.
    Shen, B. and Hutchinson, C.R. (1993) Biochemistry 32, 6656–6663PubMedCrossRefGoogle Scholar
  13. 13.
    Shen, B. and Hutchinson, C.R. (1994) J. Biol. Chem. 269, 30726–30733PubMedGoogle Scholar
  14. 14.
    Rafanan, E.R., Jr., Le, L., Zhao, L., Decker, H. and Shen, B. (2001) J. Nat. Prod. 64, 444–449PubMedCrossRefGoogle Scholar
  15. 15.
    Doublie, S. (1997) Methods Enzymol. 276, 523–530PubMedCrossRefGoogle Scholar
  16. 16.
    Minor, Z.O.a.W. (1997) In Methods in Enzymology Vol. 276: Macromolecular Crystallography, part A (Eds., Carter, C.W., Jr. and R.M. Sweet), Academic Press, New York, pp. 307–326Google Scholar
  17. 17.
    Terwilliger, T.C. and Berendzen, J. (1999) Acta Crystallogr. D Biol. Crystallogr. 55(Pt 4), 849–861PubMedCrossRefGoogle Scholar
  18. 18.
    Terwilliger, T.C. (2003) Methods Enzymol. 374, 22–37PubMedGoogle Scholar
  19. 19.
    Pannu, N.S., Murshudov, G.N., Dodson, E.J. and Read, R.J. (1998) Acta Crystallogr. D Biol. Crystallogr. 54, 1285–1294PubMedCrossRefGoogle Scholar
  20. 20.
    McRee, D.E. (1999) J. Struct. Biol. 125, 156–165PubMedCrossRefGoogle Scholar
  21. 21.
    Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) Nucleic Acids Res. 22, 4673–4680PubMedCrossRefGoogle Scholar
  22. 22.
    Holm, L. and Sander, C. (1993) J. Mol. Biol. 233, 123–138PubMedCrossRefGoogle Scholar
  23. 23.
    Kaplan, W. and Littlejohn, T.G. (2001) Brief Bioinform. 2, 195–197PubMedCrossRefGoogle Scholar
  24. 24.
    Cohen, G.H. (1997) J. Appl. Cryst. 30, 1160–1161CrossRefGoogle Scholar
  25. 25.
    O’Sullivan, O., Suhre, K., Abergel, C., Higgins, D.G. and Notredame, C. (2004) J. Mol. Biol. 340, 385–395PubMedCrossRefGoogle Scholar
  26. 26.
    Gouet, P., Robert, X. and Courcelle, E. (2003) Nucleic Acids Res. 31, 3320–3323PubMedCrossRefGoogle Scholar
  27. 27.
    Lee, B. and Richards, F.M. (1971) J. Mol. Biol. 55, 379–400PubMedCrossRefGoogle Scholar
  28. 28.
    Orengo, C.A., Flores, T.P., Jones, D.T., Taylor, W.R. and Thornton, J.M. (1993) Curr. Biol. 3, 131–139PubMedCrossRefGoogle Scholar
  29. 29.
    Bateman, A. et al. (2004) Nucleic Acids Res. 32(Database issue), D138–D141PubMedCrossRefGoogle Scholar
  30. 30.
    Keatinge-Clay, A.T., Maltby, D.A., Medzihradszky, K.F., Khosla, C. and Stroud, R.M. (2004) Nat. Struct. Mol. Biol. 11, 888–893PubMedCrossRefGoogle Scholar
  31. 31.
    Murakami, S., Nakashima, R., Yamashita, E. and Yamaguchi, A. (2002) Nature 419, 587–593PubMedCrossRefGoogle Scholar
  32. 32.
    Yu, E.W., McDermott, G., Zgurskaya, H.I., Nikaido, H. and Koshland, D.E., Jr. (2003) Science, 300, 976–980PubMedCrossRefGoogle Scholar
  33. 33.
    Nathan, C. and Shiloh, M.U. (2000) Proc. Natl. Acad. Sci. USA 97, 8841–8848PubMedCrossRefGoogle Scholar
  34. 34.
    Spagnolo, L. et al. (2004) J. Biol. Chem. 279, 33447–33455PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Joanne Lemieux
    • 1
  • Claire Ference
    • 1
  • Maia M. Cherney
    • 1
  • Metian Wang
    • 2
  • Craig Garen
    • 1
  • Michael N. G. James
    • 1
  1. 1.Department of Biochemistry, CIHR Group in Protein Structure and FunctionUniversity of AlbertaEdmontonCanada
  2. 2.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations