Journal of Structural and Functional Genomics

, Volume 6, Issue 4, pp 269–279 | Cite as

Crystal structures of a phosphotransacetylase from Bacillus subtilis and its complex with acetyl phosphate

  • Qian Steven Xu
  • Jarmila Jancarik
  • Yun Lou
  • Kate Kuznetsova
  • Alexander F. Yakunin
  • Hisao Yokota
  • Paul Adams
  • Rosalind Kim
  • Sung-Hou Kim
Article

Abstract

Phosphotransacetylase (Pta) [EC 2.3.1.8] plays a major role in acetate metabolism by catalyzing the reversible transfer of the acetyl group between coenzyme A (CoA) and orthophosphate: CH3COSCoA+HPO \(_{4}^{2-}\rightleftarrows\)CH3COOPO32−+CoASH. In this study, we report the crystal structures of Pta from Bacillus subtilis at 2.75 Å resolution and its complex with acetyl phosphate, one of its substrates, at 2.85 Å resolution. In addition, the Pta activity of the enzyme has been assayed. The enzyme folds into an α/β architecture with two domains separated by a prominent cleft, very similar to two other known Pta structures. The enzyme–acetyl phosphate complex structure reveals a few potential substrate binding sites. Two of them are located in the middle of the interdomain cleft: each one is surrounded by a region of strictly and highly conserved residues. High structural similarities are found with 4-hydroxythreonine-4-phosphate dehydrogenase (PdxA), and isocitrate and isopropylmalate dehydrogenases, all of which utilize NADP+ as their cofactor, which binds in the interdomain cleft. Their substrate binding sites are close to the acetyl phosphate binding sites of Pta in the cleft as well. These results suggest that the CoA is likely to bind to the interdomain cleft of Pta in a similar way as NADP+ binds to the other three enzymes.

Keywords

Bacillus subtilis Berkeley Structural Genomics Center (BSGC) crystal structure GI16080818 phosphotransacetylase structural genomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Henkin J., and Abeles R.H. (1976). Biochemistry 15: 3472–3479PubMedCrossRefGoogle Scholar
  2. 2.
    Iyer P.P., and Ferry J.G. (2001). Journal of Bacteriology 183: 4244–4250PubMedCrossRefGoogle Scholar
  3. 3.
    Rasche M.E., Smith K.S., and Ferry J.G. (1997). Journal of Bacteriology 179: 7712–7717PubMedGoogle Scholar
  4. 4.
    Iyer P.P., Lawrence S.H., Luther K.B., Rajashankar K.R., Yennawar H.P., Ferry J.G., and Schindelin H. (2004). Structure 12: 559–567PubMedCrossRefGoogle Scholar
  5. 5.
    Xu Q.S., Shin D.-H., Pufan R., Yokota H., Kim R., and Kim S.-H. (2004) Proteins: Structure, Function, and Bioinformatics 55: 479–481CrossRefGoogle Scholar
  6. 6.
    Rado T.A., and Hoch J.A. (1973). Biochim Biophys Acta 321: 114–125PubMedGoogle Scholar
  7. 7.
    Kim R., Sandler S.J., Goldman S., Yokota H., Clark A.J. and Kim S.-H. (1998). Biotechnology Letters 20:207–210CrossRefGoogle Scholar
  8. 8.
    Jancarik J., and Kim S.-H. (1991). J. Appl. Crystallography 24: 409–411CrossRefGoogle Scholar
  9. 9.
    Otwinowski Z., and Minor W. (1997). Methods Enzymol 276: 307–326CrossRefGoogle Scholar
  10. 10.
    Brunger A.T., Adams P.D., Clore G.M., DeLano W.L., Gros P., Grosse-Kunstleve R.W., Jiang J.S., Kuszewski J., Nilges M., Pannu N.S., Read R.J., Rice L.M., Simonson T., and Warren G.L. (1998). Acta Crystallogr D Biol Crystallogr 54: 905–921PubMedCrossRefGoogle Scholar
  11. 11.
    Jones T.A., Zou J.Y., Cowan S.W., and Kjeldgaard (1991) Acta Crystallogr A 47: 110–119PubMedCrossRefGoogle Scholar
  12. 12.
    Murshudov G.N., Vagin A.A., and Dodson E.J. (1997). Acta Crystallogr D Biol Crystallogr 53: 240–255PubMedCrossRefGoogle Scholar
  13. 13.
    Kleywegt G.J., and Jones T.A. (1998). Acta Crystallogr D Biol Crystallogr 54: 1119–1131PubMedCrossRefGoogle Scholar
  14. 14.
    Whiteley H.R., and Pelroy R.A. (1972). J Biol Chem 247: 1911–1917PubMedGoogle Scholar
  15. 15.
    Rossmann M.G., Moras D., and Olsen K.W. (1974). Nature 250: 194–199PubMedCrossRefGoogle Scholar
  16. 16.
    Holm L., and Sander C. (1996). Science 273: 595–603PubMedCrossRefGoogle Scholar
  17. 17.
    Sivaraman J., Li Y., Banks J., Cane D.E., Matte A., and Cygler M. (2003). J Biol Chem 278: 43682–43690PubMedCrossRefGoogle Scholar
  18. 18.
    Lundie Jr L.L., and Ferry J.G. (1989). J Biol Chem 264: 18392–18396PubMedGoogle Scholar
  19. 19.
    Bock A.K., Glasemacher J., Schmidt R., and Schonheit P. (1999). J Bacteriol 181: 1861–1867PubMedGoogle Scholar
  20. 20.
    Kraulis P.J. (1991). J. Appl. Crystallography 24: 946–950CrossRefGoogle Scholar
  21. 21.
    Merritt E.A. (1994). Acta Crystallogr D Biol Crystallogr 50: 869–873PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Qian Steven Xu
    • 1
  • Jarmila Jancarik
    • 2
  • Yun Lou
    • 1
  • Kate Kuznetsova
    • 3
  • Alexander F. Yakunin
    • 3
  • Hisao Yokota
    • 1
  • Paul Adams
    • 1
  • Rosalind Kim
    • 1
  • Sung-Hou Kim
    • 1
    • 2
  1. 1.Berkeley Structural Genomics Center, Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  3. 3.Banting and Best Department of Medical ResearchUniversity of TorontoTorontoCanada

Personalised recommendations