Journal of Structural and Functional Genomics

, Volume 5, Issue 4, pp 231–240 | Cite as

Crystal structure of the hypothetical protein TA1238 from Thermoplasma acidophilum: A new type of helical super-bundle

  • Ruslan Sanishvili
  • Micha Pennycooke
  • Jun Gu
  • Xiaohui Xu
  • Andrzej JoachimiakEmail author
  • Aled M. EdwardsEmail author
  • Dinesh Christendat


The crystal structure of the hypothetical protein TA1238 from Thermoplasma acidophilum was solved with multiple-wavelength anomalous diffraction and refined at 2.0 Å resolution. The molecule consists of a typical four-helix antiparallel bundle with overhand connection. However, its oligomerization into a trimer leads to a ‘coiled ‘super-helix’ which is novel for such bundles. Its central feature, a six-stranded coiled coil, is also novel for proteins. TA1238 does not have strong sequence homologues in databases, but shows strong structural similarity with some proteins in the Protein Data Bank. The function could not be inferred from the sequence but the structure, with some rearrangement, bears some resemblance to the active site region of cobalamin adenosyltransferase (TA1434). Specifically, TA1238 retains Arg104, which is structurally equivalent to functionally critical Arg119 of TA1434. For such conformational change, the overhand connection of TA1238 might need to be involved in a gating mechanism that might be modulated by ligands and/or by interactions with the physiological partners. This allowed us to hypothesize that TA1238 could be involved in cobalamin biosyntheses

Key words

cobalamin biosynthesis crystal structure four-helix bundle gating mechanism MAD phasing overhand connection six-stranded coiled coil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kim, S.H., Shin, D.H., Choi, I.G., Schulze-Gahmen, U., Chen, S., and Kim, R. (2003) J. Struct. Funct. Genomics 4(2–3), 129–135.Google Scholar
  2. 2.
    Sanishvili, R., Yakunin, A.F., Laskowski, R.A., Skarina, T., Evdokimova, E., Doherty-Kirby, A., Lajoie, G.A., Thornton, J.M., Arrowsmith, C.H., Savchenko, A., Joachimiak, A., and Edwards, A.M. (2003) J. Biol. Chem. 278(28), 26039–26045.Google Scholar
  3. 3.
    Laskowski, R.A., Watson, J.D. Thornton, J.M. (2003) J. Struct. Func. Genomics 4, and 167–177.Google Scholar
  4. 4.
    Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Barrell, D., Bateman, A., Binns, D., Biswas, M., Bradley, P., Bork, P., Bucher, P., Copley, R.R., Courcelle, E., Das, U., Durbin, R., Falquet, L., Fleischmann, W., Griffiths-Jones, S., Haft, D., Harte, N., Hulo, N., Kahn, D., Kanapin, A., Krestyaninova, M., Lopez, R., Letunic, I., Lonsdale, D., Silventoinen, V., Orchard, S.E., Pagni, M., Peyruc, D., Ponting, C.P., Selengut, J.D., Servant, F., Sigrist, C.J., Vaughan, R., and Zdobnov, E.M. (2003) Nucleic Acids Res. 31(1), 315–318.Google Scholar
  5. 5.
    Pal, D., Suhnel, J. and Weiss, M.S. (2002) Angew Chem. Int. Ed. Engl. 41(24), 4663–4665.Google Scholar
  6. 6.
    Watson, J.D. and Milner-White, E.J. (2002) J. Mol. Biol. 315(2), 183–191.Google Scholar
  7. 7.
    Watson, J.D. and Milner-White, E.J. (2002) J. Mol. Biol. 315(2), 171–182.Google Scholar
  8. 8.
    Wallace, A.C., Borkakoti, N. and Thornton, J.M. (1997) Protein Sci. 6(11), 2308–2323.Google Scholar
  9. 9.
    Barker, J.A. and Thornton, J.M. (2003) Bioinformatics 19(13), 1644–1649.Google Scholar
  10. 10.
    Christendat, D., Saridakis, V., Dharamsi, A., Bochkarev, A., Pai, E.F., Arrowsmith, C.H., and Edwards, A.M. (2000) J. Biol. Chem. 275(32), 24608–24612.Google Scholar
  11. 11.
    Evans, G. and. Pettifer, R.F. (2001) J. Appl. Crystallogr. 34, 82–86.Google Scholar
  12. 12.
    Westbrook, E.M. and Naday, I. (1997) Methods Enzymol. 276, 244–268.Google Scholar
  13. 13.
    Pflugrath, J.W. (1999) Acta. Crystallogr. D55, 1718–1725.Google Scholar
  14. 14.
    Otwinowski, Z. and Minor, W. (1997) Methods Enzymol. 276, 307–326.Google Scholar
  15. 15.
    Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., GrosseKuunstleve, R.W., Kuszewski, J., Nilges, M., Pannu, N., Read, R.J., Rice, L.M., Simonson, T., and Warren, G.L. (1998) Acta Crystallogr. D54, 905–921.Google Scholar
  16. 16.
    Perrakis, A., Morris, R. and Lamzin, V.S. (1999) Nat. Struct. Biol. 6, 458–463.Google Scholar
  17. 17.
    Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997) Acta Crystallogr. D53, 240–255.Google Scholar
  18. 18.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000) Nucleic Acids Res. 28, 235–242.CrossRefGoogle Scholar
  19. 19.
    Collaborative Computational Project, (1994) Acta Crystallogr. D50, 760–763.Google Scholar
  20. 20.
    Presnell, S.R. and Cohen F.E. (1989) Proc. Natl. Acad. Sci. USA 86(17), 6592–6596.Google Scholar
  21. 21.
    Crick, F.H.C. (1953) Acta Crystallogr. 6, 689–697.Google Scholar
  22. 22.
    Harris, N.L., Presnell, S.R., and Cohen, F.E. (1994) J. Mol. Biol. 236(5), 1356–1368.Google Scholar
  23. 23.
    Hol, W.G., van Duijnen, P.T., and Berendsen, H.J. (1978) Nature 273(5662), 443–446.Google Scholar
  24. 24.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) J. Mol. Biol. 215(3), 403–410.Google Scholar
  25. 25.
    Weber, P.C. and Salemme F.R. (1980) Nature 287(5777), 82–84.Google Scholar
  26. 26.
    Saridakis, V., Yakunin, A., Xu, X., Anandakumar, P., Pennycooke, M., Gu, J., Cheung, F., Lew, J.M., Sanishvili, R., Joachimiak, A., Arrowsmith, C.H., Christendat, D., and Edwards, A.M. (2004) J. Biol. Chem., 279, 23646–23653.Google Scholar
  27. 27.
    Hua, Y. and Raleigh D.P. (1998) J. Mol. Biol. 278(4), 871–878.Google Scholar
  28. 28.
    Dubovskii, P.V., Li, H., Takahashi, S., Arseniev, A.S., and Akasaka, K. (2000) Protein Sci. 9(4), 786–798.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ruslan Sanishvili
    • 1
  • Micha Pennycooke
    • 2
  • Jun Gu
    • 2
  • Xiaohui Xu
    • 2
  • Andrzej Joachimiak
    • 3
    Email author
  • Aled M. Edwards
    • 4
    • 5
    • 6
    Email author
  • Dinesh Christendat
    • 7
  1. 1.Biosciences, Argonne National LaboratoryStructural Biology Center, Midwest Center for Structural GenomicsArgonneUSA
  2. 2.Clinical Genomics CenterUniversity Health NetworkToronto, OntarioCanada
  3. 3.Argonne National LaboratoryStructural Biology CenterArgonneUSA
  4. 4.Banting and Best Department of Medical ResearchUniversity of TorontoToronto, OntarioCanada
  5. 5.Structural Genomics ConsortiumUniversity of TorontoToronto, OntarioCanada
  6. 6.Department of Medical BiophysicsUniversity of TorontoToronto, OntarioCanada
  7. 7.Department of BotanyUniversity of TorontoToronto, OntarioCanada

Personalised recommendations