Journal of Structural and Functional Genomics

, Volume 6, Issue 2–3, pp 135–141 | Cite as

High-throughput Protein Production for X-ray Crystallography and Use of Size Exclusion Chromatography to Validate or Refute Computational Biological Unit Predictions

  • Daniel McMullan
  • Jaume M. Canaves
  • Kevin Quijano
  • Polat Abdubek
  • Edward Nigoghossian
  • Justin Haugen
  • Heath E. Klock
  • Juli Vincent
  • Joanna Hale
  • Jessica Paulsen
  • Scott A. Lesley
Article

Abstract

The production of large numbers of highly purified proteins for X-ray crystallography is a significant bottleneck in structural genomics. At the Joint Center for Structural Genomics (JCSG; http://www.jcsg.org), specific automated protein expression, purification, and analytical methods are being utilized to study the proteome of Thermotoga maritima. Anion exchange and size exclusion chromatography (SEC), intended for the production of highly purified proteins, have been automated and the procedures are described here in detail. Analytical SEC has been included as a standard quality control test. A biological unit (BU) is the macromolecule that has been proven or is presumed to be functional. Correct assignment of BUs from protein structures can be difficult. BU predictions obtained via the Protein Quaternary Structure file server (PQS; http://pqs.ebi.ac.uk/) were compared to SEC data for 16 representative T. maritima proteins whose structures were solved at the JCSG, revealing an inconsistency in five cases. Herein, we report that SEC can be used to validate or disprove PQS-derived oligomeric models. A substantial amount of associated SEC and structural data should enable us to use certain PQS parameters to gauge the accuracy of these computational models and to generally improve their predictions.

Key words

biological unit high-throughput PQS protein purification SEC structural genomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E. 2000Nucleic Acids Res.28235242CrossRefPubMedGoogle Scholar
  2. 2.
    Henrick, K., Thornton, J.M. 1998Trends Biochem. Sci.23358361CrossRefPubMedGoogle Scholar
  3. 3.
    Lesley, S.A., Kuhn, P., Godzik, A., Deacon, A.M., Mathews, I., Kreusch, A., Spraggon, G., Klock, H.E., McMullan, D., Shin, T., Vincent, J., Robb, A., Brinen, L.S., Miller, M.D., McPhillips, T.M., Miller, M.A., Scheibe, D., Canaves, J.M., Guda, C., Jaroszewski, L., Selby, T.L., Elsliger, M.A., Wooley, J., Taylor, S.S., Hodgson, K.O., Wilson, I.A., Schultz, P.G., Stevens, R.C. 2002Proc. Natl. Acad. Sci. USA991166411669CrossRefPubMedGoogle Scholar
  4. 4.
    DiDonato, M., Deacon, A.M., Klock, H.E., McMullan, D., Lesley, S.A. 2004J. Struct. Funct. Genomics5133146CrossRefPubMedGoogle Scholar
  5. 5.
    Hendrickson, W.A., Horton, J.R., LeMaster, D.M. 1990EMBO J.916651672PubMedGoogle Scholar
  6. 6.
    Nelson, K.E., Clayton, R.A., Gill, S.R., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, E.K., Peterson, J.D., Nelson, W.C., Ketchum, K.A., McDonald, L., Utterback, T.R., Malek, J.A., Linher, K.D., Garrett, M.M., Stewart, A.M., Cotton, M.D., Pratt, M.S., Phillips, C.A., Richardson, D., Heidelberg, J., Sutton, G.G., Fleischmann, R.D., Eisen, J.A., White, O., Salzberg, S.L., Smith, H.O., Venter, J.C., Fraser, C.M. 1999Nature399323329CrossRefPubMedGoogle Scholar
  7. 7.
    Levin, I., Schwarzenbacher, R., McMullan, D., Abdubek, P., Ambing, E., Biorac, T., Cambell, J., Canaves, J.M., Chiu, H.J., Dai, X., Deacon, A.M., DiDonato, M., Elsliger, M.A., Godzik, A., Grittini, C., Grzechnik, S.K., Hampton, E., Jaroszewski, L., Karlak, C., Klock, H.E., Koesema, E., Kreusch, A., Kuhn, P., Lesley, S.A., McPhillips, T.M., Miller, M.D., Morse, A., Moy, K., Ouyang, J., Page, R., Quijano, K., Reyes, R., Robb, A., Sims, E., Spraggon, G., Stevens, R.C., Bedem, H., Velasquez, J., Vincent, J., Delft, F., Wang, X., West, B., Wolf, G., Xu, Q., Hodgson, K.O., Wooley, J., Wilson, I.A. 2004Proteins56629633CrossRefPubMedGoogle Scholar
  8. 8.
    Henzel, W.J., Billeci, T.M., Stults, J.T., Wong, S.C., Grimley, C., Watanabe, C. 1993Proc. Natl. Acad. Sci. USA9050115015PubMedGoogle Scholar
  9. 9.
    Aebersold, R., Goodlett, D.R. 2001Chem. Rev.101269295CrossRefPubMedGoogle Scholar
  10. 10.
    Kyte, J., Doolittle, R.F. 1982J. Mol. Biol.157105132CrossRefPubMedGoogle Scholar
  11. 11.
    Hennig, L. 1999BioTechniques2611701172PubMedGoogle Scholar
  12. 12.
    Lee, B., Richards, F.M. 1971J. Mol. Biol.55379400CrossRefPubMedGoogle Scholar
  13. 13.
    Eisenberg, D., McLachlan, A.D. 1986Nature319199203CrossRefPubMedGoogle Scholar
  14. 14.
    Collaborative Computational Project Number 41994Acta Cryst.D50760763Google Scholar
  15. 15.
    Lodge, J.A., Maier, T., Liebl, W., Hoffmann, V., Strater, N. 2003J. Biol. Chem.2781915119158CrossRefPubMedGoogle Scholar
  16. 16.
    Jaroszewski, L., Li, W., Godzik, A. 2002Protein Sci.1117021713CrossRefPubMedGoogle Scholar
  17. 17.
    Fushinobu, S., Shoun, H., Wakagi, T. 2003Biochemistry421170711715CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Daniel McMullan
    • 1
  • Jaume M. Canaves
    • 2
  • Kevin Quijano
    • 1
  • Polat Abdubek
    • 1
  • Edward Nigoghossian
    • 1
  • Justin Haugen
    • 1
  • Heath E. Klock
    • 1
  • Juli Vincent
    • 1
  • Joanna Hale
    • 1
  • Jessica Paulsen
    • 1
  • Scott A. Lesley
    • 1
  1. 1.Joint Center for Structural GenomicsGenomics Institute of the Novartis Research FoundationSan DiegoUSA
  2. 2.Joint Center for Structural Genomics, Center for Research in Biological SystemsUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations