Journal of Structural and Functional Genomics

, Volume 6, Issue 2–3, pp 165–170 | Cite as

Large-scale Transient Transfection of Mammalian Cells: A Newly Emerging Attractive Option for Recombinant Protein Production

Article

Abstract

Mammalian expression systems have an undisputed long-standing and very successful history for the generation of recombinant proteins, mainly as biopharmaceuticals. However, for use as ‘tool proteins’ in, e.g. assay development and screening, for structure elucidation and as antigens these expression systems were generally regarded as being cumbersome, tedious and expensive. This bias has largely been overcome with the very recent development of large-scale transient transfection (LST) approaches. Especially the HEK.EBNA expression system described here has contributed significantly to this success. The simplicity and speed of this approach compares well with expression trials using the widely applied Baculovirus/insect cell system. In addition, proteins generated in mammalian cells are usually correctly folded, fully processed and functionally active.

Key words

HEK.EBNA mammalian cells PEI recombinant protein production transient transfection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blasey, H.D., Aubry, J.P., Mazzei, G.J., Bernard, A.R. 1996Cytotechnology18183192CrossRefGoogle Scholar
  2. 2.
    Ridder, R., Geisse, S., Kleuser, B., Kawalleck, P., Gram, H. 1995Gene166273276CrossRefPubMedGoogle Scholar
  3. 3.
    Cho, M.S., Yee, H., Chan, S. 2002J. Biomed. Sci.9631638CrossRefPubMedGoogle Scholar
  4. 4.
    Cho, M.S., Yee, H., Brown, C., Mei, B., Mirenda, C., Chan, S. 2003Biotechnol. Progr.19229232CrossRefGoogle Scholar
  5. 5.
    Durocher, Y., Perret, S., Kamen, A. 2002Nucleic Acid Res.3029CrossRefGoogle Scholar
  6. 6.
    Pham, P.L., Perret, S., Doan, H.C., Cass, B., St-Laurent, G., Kamen, A., Durocher, Y. 2003Biotechnol. Bioeng.84333342CrossRefGoogle Scholar
  7. 7.
    Schlaeger, E.-J., Christensen, K. 1999Cytotechnology307183CrossRefGoogle Scholar
  8. 8.
    Schlaeger, E.-J., Kitas, E.A., Dorn, A. 2003Cytotechnology424755CrossRefGoogle Scholar
  9. 9.
    Meissner, P., Pick, H., Kulangara, A., Chatellard, P., Friedrich, K., Wurm, F.M. 2001Biotechnol. Bioeng.75197203CrossRefPubMedGoogle Scholar
  10. 10.
    Derouazi, M., Girard, P., Tilborgh, F., Iglesias, K., Muller, N., Bertschinger, M., Wurm, F.M. 2004Biotechnol. Bioeng.87537545CrossRefPubMedGoogle Scholar
  11. 11.
    Tait, A., Hoare, M., Birch, J., Galbraith, D.J., Hines, M., Brown, C.J. and James, D.C. (2003) Poster Presentation at the 18th ESACT Meeting Animal Cell Technology meets Genomics, May 11–14, Granada, SpainGoogle Scholar
  12. 12.
    Craenenbroeck, K., Vanhoenacker, P., Haegeman, G. 2000Eur. J. Biochem.26756655678CrossRefPubMedGoogle Scholar
  13. 13.
    Boussif, O., Lezoualc’h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B., Behr, J.-P. 1995Proc. Natl. Acad. Sci.9272977301PubMedGoogle Scholar
  14. 14.
    Wurm, F.M., Bernard, A. 1999Curr. Opinion Biotechnol.10156159CrossRefGoogle Scholar
  15. 15.
    Tate, C.G., Haase, J., Baker, C., Boorsma, M., Magnani, F., Vallis, Y., Williams, D.C. 2003Biochim. Biophys. Acta1610141153PubMedGoogle Scholar
  16. 16.
    Girard, P., Derouazi, M., Baumgartner, G., Bourgeois, M., Jordan, M., Jacko, B., Wurm, F.M. 2002Cytotechnology381521CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Novartis Institutes for BioMedical ResearchDiscovery Technologies/Biomolecules ProductionBaselSwitzerland

Personalised recommendations