Advertisement

Assessment of tritium distribution in rain, surface and drinking water in Portugal during 2006–2017 period

  • M. J. MadrugaEmail author
  • A. R. Gomes
  • J. Abrantes
  • A. Libânio
  • M. Reis
Article
  • 13 Downloads

Abstract

Water samples from different origins (rain, surface and drinking) collected in Portugal during the years 2006 to 2017 were analyzed for the tritium (3H) activity contents using isotopic enrichment followed by liquid scintillation counting. Regarding rainwater, the results show no significant correlation between the normalized 3H and the precipitation amount and no variations among the annual seasons. The higher 3H values observed for Tejo River indicate the influence of the Almaraz NPP located in Spain. The 3H activity levels in drinking water were one to two orders of magnitude lower than the European parametric value (100 Bq L−1).

Keywords

Tritium Liquid scintillation counting Rainwater Surface water Drinking water Portugal 

Notes

Acknowledgements

The authors would like to thank the colleague Eva Andrade for drawing up the map and the anonymous reviewers for the substantial suggestions, which greatly improved this manuscript.

References

  1. 1.
    Lucas L, Unterweger M (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Natl Inst Stand Technol 105(4):541–549.  https://doi.org/10.6028/jres.105.043 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Anh HL, Anh VT, Giap TV, Thinh NTH, Minh TK, Hoai V (2018) Monitoring of tritium concentration in Hanoi’s precipitation from 2011 to 2016. J Environ Radioact 192:143–149.  https://doi.org/10.1016/j.jenvrad.2018.06.009 CrossRefPubMedGoogle Scholar
  3. 3.
    Ansari MA, Mohokar HV, Deodhar A, Jacob N, Sinha UK (2018) Distribution of environmental tritium in rivers, groundwater, mine water and precipitation in Goa, India. J Environ Radioact 189:120–126.  https://doi.org/10.1016/j.jenvrad.2018.04.004 CrossRefPubMedGoogle Scholar
  4. 4.
    Technical Report Series, no. 421. Management of waste containing tritium and carbon-14, Vienna, IAEA, 2004. ISSN 0074-1914Google Scholar
  5. 5.
    Harms P, Visser A, Moran J, Esser B (2016) Distribution of tritium in precipitation and surface water in California. J Hydrol 534:63–72.  https://doi.org/10.1016/j.jhydrol.2015.12.046 CrossRefGoogle Scholar
  6. 6.
    Cauquoin A, Jean-Baptiste P, Ris C, Fourre E, Stennic B, Landais A (2015) The global distribution of natural tritium in precipitation simulated with an atmospheric general circulation model and comparison with observation. Earth Planet Sci Lett 427:160–170.  https://doi.org/10.1016/j.epsl.2015.06.043 CrossRefGoogle Scholar
  7. 7.
    Yi P, Wan C, Jin H, Luo D, Yang Y, Wang Q, Yu Z, Aldahan A (2018) Hydrological insights from hydrogen and oxygen isotopes in Source Area of the Yellow River, east-northern part of Qinghai–Tibet Plateau. J Radioanal Nucl Chem 317:131–144.  https://doi.org/10.1007/s10967-018-5864-7 CrossRefGoogle Scholar
  8. 8.
    Wan C, Gibson J, Shen S, Yi Y, Yi P, Yu Z (2019) Using stable isotopes paired with tritium analysis to assess thermokarst lake water balances in the Source Area of the Yellow River, northeastern Qinghai–Tibet Plateau, China. Sci Total Environ 689:1276–1292.  https://doi.org/10.1016/j.scitotenv.2019.06.427 CrossRefPubMedGoogle Scholar
  9. 9.
    Madruga MJ (2008) Environmental radioactivity monitoring in Portugal. Appl Radiat Isot 66:1639–1643.  https://doi.org/10.1016/j.apradiso.2008.04.008 CrossRefPubMedGoogle Scholar
  10. 10.
    Baeza A, Brogueira A, Carreiro MC, García E, Gil JM, Miro C, Sequeira MM, Teixeira MM (2001) Temporal evolution of the levels of tritium in the Tagus River in its passage through Caceres (Spain) and the Alentejo (Portugal). Water Res 35(3):705–714.  https://doi.org/10.1016/S0043-1354(00)00302-X CrossRefPubMedGoogle Scholar
  11. 11.
    Gomes AR, Abrantes J, Libânio A, Madruga MJ, Reis M (2017) Determination of tritium in water using electrolytic enrichment: methodology improvements. J Radioanal Nucl Chem 314:669–674.  https://doi.org/10.1007/s10967-017-5456-y CrossRefGoogle Scholar
  12. 12.
    STATISTICA, V.13.2, 2016. StatSoftGoogle Scholar
  13. 13.
    Villa M, Manjón G (2004) Low-level measurements of tritium in water. Appl Radiat Isot 61:319–323.  https://doi.org/10.1016/j.apradiso.2004.03.027 CrossRefPubMedGoogle Scholar
  14. 14.
    Stamoulis KC, Karamanis D, Ioannides KG (2011) Assessment of tritium levels in rivers and precipitation in north-western Greece before the ITER operation. Fusion Eng Des 86:206–213.  https://doi.org/10.1016/j.fusengdes.2010.12.056 CrossRefGoogle Scholar
  15. 15.
    STUK-B 236. Environmental radiation monitoring in Finland, Annual Report 2018, A. Mattila ed. (2019) ISBN 978-952-309-434-5 (pdf)Google Scholar
  16. 16.
    Vivas P, Heredia S, Gómez A., Fernández B, Ruiz J, Castillo C., González MJ (2019). Programas de Vigilância Radiológica Ambiental - Resultados 2017. Colección Informes Técnicos, 50.2019. Referencia INT-04.40, Consejo de Seguridad Nuclear, Depósito legal: M-41809-2018Google Scholar
  17. 17.
    Kim KJ, Choi Y, Yoon Y-Y (2016) Monitoring 7Be and tritium in rainwater in Daejeon, Korea and its significance. Appl Radiat Isot 109:470–473.  https://doi.org/10.1016/j.apradiso.2015.11.094 CrossRefPubMedGoogle Scholar
  18. 18.
    Palomo M, Peñalver A, Aguilar C, Borrull F (2007) Tritium activity levels in environmental water samples from different origins. Appl Radiat Isot 65(9):1048–1056.  https://doi.org/10.1016/j.apradiso.2007.03.013 CrossRefPubMedGoogle Scholar
  19. 19.
    Madruga MJ, Sequeira MM, Gomes AR (2009) Determination of tritium in waters by liquid scintillation counting. In: Eikenberg J (ed) LSC 2008, International conference on advances in liquid scintillation spectrometry. Radiocarbon. ISBN: 978-0-9638314- 6-0. Arizona, USA, (2009) pp 353–359Google Scholar
  20. 20.
    Péron O, Gégout C, Reeves B, Rousseau G, Montavon G, Landesman C (2016) Anthropogenic tritium in the Loire River estuary, France. J Sea Res 118:69–76.  https://doi.org/10.1016/j.seares.2016.04.003 CrossRefGoogle Scholar
  21. 21.
    Grahek Z, Breznik B, Stojkovi I, Coha I, Nikolov J, Todorovi N (2016) Measurement of tritium in the Sava and Danube Rivers. J Environ Radioact 162–163:56–67.  https://doi.org/10.1016/j.jenvrad.2016.05.014 CrossRefPubMedGoogle Scholar
  22. 22.
    Stamoulis K, Ioannides K, Kassomenos P, Vlachogianni A (2005) Tritium concentration in rainwater samples in Northwestern Greece. Fusion Sci Technol 48(1):512–515.  https://doi.org/10.13182/FST05-A978 CrossRefGoogle Scholar
  23. 23.
    Ducros L, Eyrolle F, Vedova C, Charmasson S, Leblanc M, Mayer M, Babic M, Antonelli C, Mourier D, Giner F (2018) Tritium in river waters from French Mediterranean catchments: background levels and variability. Sci Total Environ 612:672–682.  https://doi.org/10.1016/j.scitotenv.2017.08.026 CrossRefPubMedGoogle Scholar
  24. 24.
    Eyrolle F, Ducrosa L, Le Dizès S, Beaugelin-Seiller K, Charmasson S, Boyer P, Cossonnet C (2018) An updated review on tritium in the environment. J Environ Radioact 181:128–137.  https://doi.org/10.1016/j.jenvrad.2017.11.001 CrossRefPubMedGoogle Scholar
  25. 25.
    European Directive 2013/51 Euratom of 22 October 2013-laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. OJEU L296/12, 7.11.2013Google Scholar
  26. 26.
    Decree-Law 152/2017, 7th December (D.R. no. 235, 1st Serie)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2020

Authors and Affiliations

  1. 1.Centro de Ciências e Tecnologias Nucleares, Instituto Superior TécnicoUniversidade de Lisboa, Campus Tecnológico e NuclearBobadela LRSPortugal
  2. 2.Laboratório de Proteção e Segurança Radiológica, Instituto Superior TécnicoUniversidade de Lisboa, Campus Tecnológico e NuclearBobadela LRSPortugal
  3. 3.Instituto Português da Qualidade (IPQ)CaparicaPortugal

Personalised recommendations