Advertisement

Historical and radiopharmaceutical relevance of [18F]FDG

  • D. PetroniEmail author
  • L. Menichetti
  • M. Poli
Article
  • 32 Downloads

Abstract

The 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) is the most well-known radiopharmaceutical positron emitter, in both clinical and preclinical fields. Based on a literature review of research from the last 40 years, this paper focuses on the most important aspects of [18F]FDG production and its evolution over time. Possible future perspectives of this important radiotracer are also discussed.

Keywords

[18F]FDG PET Automated synthesizer Quality control Legislation 

Notes

References

  1. 1.
    Jones T, Townsend D (2017) History and future technical innovation in positron emission tomography. J Med Imaging 4(1):011013CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Iwata R (2004) Reference book for PET radiopharmaceuticals. http://kakuyaku.cyric.tohoku.ac.jp/public/preface2004.html. Accessed 19 Mar 2019
  4. 4.
    International Atomic Energy Agency (2018) Quality control in the production of radiopharmaceuticals. IAEA-TECDOC-1856, ViennaGoogle Scholar
  5. 5.
    Kuhl DE, Phelps ME, Hoffman EJ, Robinson GD Jr, Mac-Donald NS (1977) Initial clinical experience with 18F-2-fluoro-2-deoxy-d-glucose for determination of local cerebral glucose utilization by emission computed tomography [abstract]. Acta Neurol Scand 56(suppl 64):192–193Google Scholar
  6. 6.
    Reivich M, Kuhl D, Wolf AP, Greenberg J, Phelps M, Ido T, Casella V, Hoffman E, Alavi A, Sokoloff L (1979) Circ Res 44:127–137PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sokoloff L, Reivich M, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetised albino rat. J Neurochem 28:897–916PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Weber WA (2006) Positron emission tomography as an imaging biomarker. J Clin Oncol 24(20):3282–3292PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Gallamini A, Zwarthoed C, Borra A (2014) Positron emission tomography (PET) in oncology. Cancers 6:1821–1889PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Gallagher BM, Ansari A, Atkins H, Casella V, Christman DR, Fowler JS, Ldo T, MacGregor RR, Som P, Wan CN, Wolf AP, Kuhl DE, Reivich M (1977) Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med 18:990–996PubMedPubMedCentralGoogle Scholar
  12. 12.
    Phelps ME (1977) Emission computed tomography. Semin Nucl Med 7(4):337–365PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Phelps ME (1977) What is the purpose of emission computed tomography in nuclear medicine? J Nucl Med 18:399–402PubMedPubMedCentralGoogle Scholar
  14. 14.
    Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Gallagher B, Hoffman E, Alavi A, Sokoloff L (1977) [Abstract] American Neurological Association meetingGoogle Scholar
  15. 15.
    Phelps ME, Hoffman EJ, Selin C, Huang SC, Robinson G, MacDonald N, DE SchelbertH Kuhl (1978) Investigation of [18F]2-fluoro-2-deoxy-glucose for the measure of myocardial glucose metabolism. J Nucl Med 19:1311–1319PubMedPubMedCentralGoogle Scholar
  16. 16.
    Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: validation of method. Ann Neurol 6:371–388PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Pacák J, Točík Z, Černý M (1969) Synthesis of 2-deoxy-2-fluoro-d-glucose. Chem Commun 77Google Scholar
  18. 18.
    Adamson J, Foster AB (1969) 2-Deoxy-2-fluoro-d-glucose. Chem Commun 6:309–310CrossRefGoogle Scholar
  19. 19.
    Adamson J, Foster AB (1970) Fluorinated carbohydrates part III’. 2-Deoxy-2-fluoro-d-glucose and 2-deoxy-2-fluoro-d-mannose. Carbohyd Res 15:351–359CrossRefGoogle Scholar
  20. 20.
    Ido T, Wan C-N, Fowler JS, Wolf AP (1977) Fluorination with F2. A convenient synthesis of 2-deoxy-2-fluoro-d-glucose. J Org Chem 42(13):2341–2342CrossRefGoogle Scholar
  21. 21.
    Fowler JS, Finn RD, Lambrecht RM, Wolf AP (1973) The synthesis of 18F-5-fluorouracil. J Nucl Med 14:63–64PubMedPubMedCentralGoogle Scholar
  22. 22.
    Ido T, Wan C-N, Casella V, Fowler JS, Wolf AP (1978) Labeled 2-deoxy-d-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-d-glucose, 2-deoxy-2-fluoro-d-mannose and 14C-2-deoxy-2-fluoro-d-glucose. J Label Compd Radiopharm 14(2):175–183CrossRefGoogle Scholar
  23. 23.
    Yu S (2006) Review of 18F-FDG synthesis and quality control. Biomed Imaging Interv J 2(4):e57PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fowler JS, Ido T (2002) Initial and subsequent approach for the synthesis of 18FDG. Semin Nucl Med 22(1):6–12CrossRefGoogle Scholar
  25. 25.
    Shiue C-Y, Salvadori PA, Wolf AP, Fowler JS, MacGregor RR (1982) A new improved synthesis of 2-deoxy-2-[18F]fluoro-d-glucose from 18F-labeled acetyl hypofluorite. J Nucl Med 23:899–903PubMedPubMedCentralGoogle Scholar
  26. 26.
    Adam MJ (1982) A rapid, stereoselective, high yielding synthesis of 2-deoxy-2-fluoro-dhexopyranoses: reaction of glycols with acetyl hypofluorite. J Chem Soc Chem Commun 13:730–732CrossRefGoogle Scholar
  27. 27.
    Diksic M, Jolly D (1983) New high-yield synthesis of 18F-labeled 2-deoxy-2-fluoro-d-glucose. Int J Appl Radiat Isot 34:893–896PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ehrenkaufer RE, Potocki JF, Jewett DM (1984) Simple synthesis of F-18-labeled 2-fluoro-2-deoxy-d-glucose: concise communication. J Nucl Med 25:333–337PubMedPubMedCentralGoogle Scholar
  29. 29.
    Jewett DM, Potocki JF, Ehrenkaufer RE (1984) A gas-solid phase microchemical method for the synthesis of acetyl hypofluorite. J Fluor Chem 24:477–484CrossRefGoogle Scholar
  30. 30.
    Shiue C-Y, To KC, Wolf AP (1983) A rapid synthesis of 2-deoxy-2-fluoro-d-glucose from xenon difluoride suitable for labeling with 18F. J Label Compd Rad 20:157–162CrossRefGoogle Scholar
  31. 31.
    Sood S, Firnau G, Gatnett ES (1983) Radiofluorination with xenon difluoride. Int JAppl Radiat Isot 34:743–745CrossRefGoogle Scholar
  32. 32.
    Levy S, Ehnaleh D, Livni E (1982) A new method using anhydrous [18F]fluoride to radiolabel 2-[18F]fluoro-2-deoxy-d-glucose. J Nucl Med 23:918–922PubMedPubMedCentralGoogle Scholar
  33. 33.
    Levy S, Livni E, Ehnaleh D, Curatolo WJ (1982) Direct displacement with anhydrous fluoride of the C-2 trifluoromethanesulfonate of methyl 4,6-O-benzylidene-3-O-methyl-2-0-trifluoromethylsulphonyl-β-D-mannoside. J Chem Soc Chem Commun 17:972–973CrossRefGoogle Scholar
  34. 34.
    Tewson TJ (1983) Cyclic sulfur esters as substrates for nucleophilic substitution. A new synthesis of 2-deoxy-2-fluoro-d-glucose. J Org Chem 48:3507–3510CrossRefGoogle Scholar
  35. 35.
    Tewson TJ (1983) Synthesis of no-carrier-added fluorine-18 2-fluoro-2-deoxy-d-glucose. J Nucl Med 24:718–721PubMedPubMedCentralGoogle Scholar
  36. 36.
    Tewson TJ, Soderlind M (1985) I-Propenyl-4,6-O-benzylidene-β-mannopyranoside-2,3-cyclic sulfate: a new substrate for the synthesis of [F-18]-2-deoxy-2-fluoroglucose [abstract]. J Nucl Med 26:P129Google Scholar
  37. 37.
    Szarek W, Hay GW, Perlmutter MM (1982) A rapid stereospecific synthesis of 2-deoxy-3-fluoro-d-glucose using fluoride ion. J Chem Soc Chem Commun 21:1253–1254CrossRefGoogle Scholar
  38. 38.
    Beeley PA, Szarek WA, Hay GW, Perlrnutter MM (1984) A synthesis of 2-deoxy-2-[18F]fluoro-d-glucose using accelerator-produced 18F-fluoride ion generated in a water target. Can J Chem 62:2709–2711CrossRefGoogle Scholar
  39. 39.
    Hamacher K, Coenen HH, Stocklin G (1986) Efficient stereospecific synthesis of NCA 2-[18F]fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238PubMedGoogle Scholar
  40. 40.
    Toorongian SA, Mulholland GK, Jewett DM, Bachelor MA, Kilbourn MR (1990) Routine production of 2-deoxy-2-[18F]fluoro-d-glucose by direct nucleophilic exchange on a quaternary4-aminopyridinium resin. Int J Rad Appl Instrum B 17:273–279PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Füchtner F, Steinbach J, Mading P, Johannsen B (1996) Basic hydrolysis of 2-[18F]Fluoro-1,3,4, 6-tetra-O-acetyl-d-glucose in the preparation of 2-[18F]Fluoro-2-deoxy-d-glucose. Appl Radiat Isot 47(I):61–66CrossRefGoogle Scholar
  42. 42.
    Aerts J, Ballinger JR, Behe M, Decristoforo C, Elsinga PH, Faivre-Chauvet F, Mindt TL, Kolenc Peitl P, Todde SC, Koziorowskik J (2014) Guidance on current good radiopharmacy practice for the small-scale preparation of radiopharmaceuticals using automated modules: a European perspective. J Label Compd Radiopharm 57:615–620CrossRefGoogle Scholar
  43. 43.
    Barrio JA, MacDonald NS, Robinson GD Jr, Najafi A, Cook JS, Kuhl DE (1981) Remote, semiautomated production of F-18-labeled 2-deoxy-2-fluoro-d-glucose. J Nucl Med 22:372–375PubMedPubMedCentralGoogle Scholar
  44. 44.
    Iwata R, Ido T, Takahashi T, Monma M (1984) Automated synthesis system for production of 2-deoxy-2-[18F]fluoro-d-glucose with computer control. Int J Appl Radiat Isot 35(6):445–454CrossRefGoogle Scholar
  45. 45.
    Oh S, Nam K, Lee KC, Ghergherehchi M, Kim B, Kim JY, Song HS, Chai JS (2018) Development of a disposable kit with fully automatic self-shielding reactor for [18F]FDG synthesis. Appl Radiat Isot 131:23–29PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Vallabhajosula S (2009) Molecular imaging. Radiopharmaceuticals for PET and SPECT. Springer, Berlin, p 2009Google Scholar
  47. 47.
    Petroni D, Poli M, Campisi L, Salvadori PA, Menichetti L (2012) Implementation of good manufacturing practice in small-volume production of [18F]FDG: a case report of performance measurements. J Radioanal Nucl Chem 293:757–762CrossRefGoogle Scholar
  48. 48.
    Krasikowa R (2007) Synthesis modules and automation in F-18 labeling. In: Schubiger PA, Lehmann L, Friebe M (eds) PET chemistry: the driving force in molecular imaging. Springer, HeidelbergGoogle Scholar
  49. 49.
    Collins J, Waldmann CM, Drake C, Slavik R, Ha NS, Sergeev M, Lazari M, Shen B, Chin FT, Moore M, Sadeghi S, Phelps ME, Murphy JM, van Dam RM (2017) Production of diverse PET probes with limited resources: 24 18F-labeled compounds prepared with a single radiosynthesizer. Proc Natl Acad Sci USA 114(43):11309–11314PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Herman H, Flores G, Quinn K, Eddings M, Olma S, Moore MD, Ding H, Bobinski KP, Wang M, Williams D, Wiliams D, Shen CK, Phelps ME, van Dam RM (2013) Plug-and-play modules for flexible radiosynthesis. Appl Radiat Isot 78:113–124PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Taylor MD, Roberts AD, Nickles RJ (1996) Improving the yield of 2-[18F]fluoro-2-deoxyglucose using a microwave cavity. Nucl Med Biol 23:605–609PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kim HW, Jeong JM, Lee YS, Chi DY, Chung KH, Lee DS, Chung JK, Lee MC (2004) Rapid synthesis of [18F]FDG without an evaporation step using an ionic liquid. Appl Radiat Isot 61:1241–1246PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Saiki H, Iwata R, Nakanishi H, Wong R, Ishikawa Y, Furumoto S, Yamahara R, Sakamoto K, Ozeki E (2010) Electrochemical concentration of no-carrier-added [18F]fluoride from [18O]water in a disposable microfluidic cell for radiosynthesis of 18F-labeled radiopharmaceuticals. Appl Radiat Isot 68:1703–1708PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Stewart MN, Hockley BG, Scott PJH (2015) Green approaches to late-stage fluorination: radiosyntheses of 18F-labelled radiopharmaceuticals in ethanol and water. Chem Commun 51:14805–14808CrossRefGoogle Scholar
  55. 55.
    Mathiessen B, Zhuravlev F (2013) Automated solid-phase radiofluorination using polymer-supported phosphazenes. Molecules 18:10531–10547PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Rensch C, Waengler B, Yaroshenko A, Samper V, Baller M, Heumesser N, Ulin J, Riese S, Reischl G (2012) Microfluidic reactor geometries for radiolysis reduction in radiopharmaceuticals. Appl Radiat Isot 70:1691–1697PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Vanbrocklin HF (2010) Radiochemistry of positron emission tomography. In: Weissleder R, Ross BD, Rehemtulla A, Gambhir SS (eds) Molecular imaging principles and practice. People’s Medical Publishing House, RaleighGoogle Scholar
  58. 58.
    Wang MW, Lin WY, Liu K, Masterman-Smith M, Shen CK (2010) Microfluidics for positron emission tomography (PET) imaging probe development. Mol Imaging 9(4):175–191PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Awasthi V, Watson J, Gali H, Matlock G, McFarland A, Bailey J, Anzellotti A (2014) A “dose on demand” biomarker generator for automated production of [18F]F and [18F]FDG. Appl Radiat Isot 89:167–175PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Pascali G, Matesic L (2016) How far are we from dose on demand of short-lived radiopharmaceuticals? In: Kuge Y et al (eds) Perspectives on nuclear medicine for molecular diagnosis and integrated therapy. Springer, Heidelberg.  https://doi.org/10.1007/978-4-431-55894-1_6 CrossRefGoogle Scholar
  61. 61.
    Fludeoxyglucose [18F] injection (2014) 8th ed. Strasbourg: European Directorate for the Quality of the Medicines and Healthcare European Pharmacopoeia, pp 3957–3959Google Scholar
  62. 62.
    Meyer G-J, Matzke KH, Hamacher K, Füchtner F, Steinbach J, Notohamiprodjo G, Zijlstra S (1999) The stability of 2-[18F]fuoro-deoxy-d-glucose towards epimerisation under alkaline conditions. Appl Radiat Isot 51:37–41CrossRefGoogle Scholar
  63. 63.
    Kiselev MY, Tadino V (2006) Stabilization of radiopharmaceuticals labelled with 18-F. US 7,018,614 B2Google Scholar
  64. 64.
    Jacobson MS, Dankwart HR, Mahoney DW (2009) Radiolysis of 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) and the role of ethanol and radioactive concentration. Appl Radiat Isot 67:990–995PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
  66. 66.
    Huang Y (2018) An overview of PET radiopharmaceuticals in clinical use: regulatory, quality and pharmacopeia monographs of the United States and Europe. https://www.intechopen.com/books/nuclear-medicine-physics/an-overview-of-pet-radiopharmaceuticals-in-clinical-use-regulatory-quality-and-pharmacopeia-monograp. Accessed 19 Mar 2019
  67. 67.
    Koziorowski J (2010) A simple method for the quality control of [18F]FDG. Appl Radiat Isot 68:1740–1742PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Nakao R, Ito T, Yamaguchi M, Suzuki K (2008) Simultaneous analysis of FDG, ClDG and Kryptofix 2.2.2. In [18F]FDG preparation by high-performance liquid chromatography with UV detection. Nucl Med Biol 35:239–244PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kilian K, Pękal A, Szkutnik W, Pyrzyńska K (2015) A fast method for the determination of residual solvents in 18FDG and 11C-methionine samples. Microchem J 115:95–99CrossRefGoogle Scholar
  70. 70.
    Anzellotti AI, McFarland AR, Ferguson D, Olson KF (2013) Towards the full automation of QC release tests for [18F]fluoride-based radiotracers. Curr Org Chem 17(19):2153–2158CrossRefGoogle Scholar
  71. 71.
    Ha NS, Sadeghi S, van Dam RM (2017) Recent progress toward microfluidic quality control testing of radiopharmaceuticals. Micromachines 8:337PubMedCentralCrossRefGoogle Scholar
  72. 72.
    Tarn MD, Isu A, Archibald SJ, Pamme N (2014) On chip absorbance spectroscopy for the determination of optical clarity and pH for the quality control testing of [18F]FDG radiotracer. In: 18th international conference on miniaturized systems for chemistry and life sciences, San Antonio, Texas, USA, pp 1077–1079Google Scholar
  73. 73.
    Taggart MP, Tarn MD, Esfahani MMN, Schofield D, Brown NJ, Archibald SJ, Deakin T, Pamme N, Thompson LF (2016) Development of radiodetection systems towards miniaturised quality control of PET and SPECT radiopharmaceuticals. Lab Chip 16:1605–1616PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Archibald S, Pamme N, Brown N, Tarn M (2015) Integrated microfluidic lab-on-a-chip systems for F radiotracer synthesis, purification and quality control. J Nucl Med 56(suppl 3):167Google Scholar
  75. 75.
    Ballinger JR, Koziorowski J (2017) Regulation of PET radiopharmaceuticals production in Europe. In: Khalil MM (ed) Basic science of PET imaging. Springer, Basel, pp 127–143CrossRefGoogle Scholar
  76. 76.
    Schwarz SW, Dick D, VanBrocklin HF, Hoffman JM (2014) Regulatory requirements for PET drug production. J Nucl Med 55:1132–1137PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    U.S. Pharmacopeial Convention (1990) USP 22–NF 17, fludeoxyglucose F 18 injection. U.S. Pharmacopeial Convention, Rockville, pp 579–580Google Scholar
  78. 78.
    Meyer G-J, Coenen HH, Waters SL, Langström Cantineau R, StrijCKmans Vaalburg W, Halldin Crouzel C, Mazièr Luxen A (1993) Quality assurance and quality control of short-lived radiopharmaceuticals for PET. In: Stöcklin G, Pike VW (eds) Radiopharmaceuticals for Positron emission tomography—methodological aspects. Springer, BerlinGoogle Scholar
  79. 79.
    https://www.fda.gov/. Accessed 29 Mar 2019
  80. 80.
    Food and Drug Modernization Act of 1997. U.S. Food and Drug Administration website. http://www.fda.gov/RegulatoryInformation/Legislation/FederalFoodDrugand-CosmeticActFDCAct/SignificantAmendmentstotheFDCAct/FDAMA/Full-TextofFDAMAlaw/default.htm. Updated 22 Oct 2009. Accessed 3 Apr 2019
  81. 81.
    Sharma S, Baldi A, Singh RK, Sharma RK (2018) Regulatory framework of radiopharmaceuticals: current status and future recommendation. RJLBPCS.  https://doi.org/10.26479/2018.0403.25 CrossRefGoogle Scholar
  82. 82.
    Fludeoxyglucose F 18 injection CMC section. In: Sample Formats: application to manufacture ammonia N 13 injection, fluorodeoxyglucose F 18 injection (FDG F 18), and sodium fluoride F 18 injection—chemistry, manufacturing, and controls section. Food and Drug Administration, Rockville, pp 24–26 (2000). http://www.fda.gov/cder/guidance/cmcsample.pdf. Accessed 3 Apr 2019
  83. 83.
    Hung JC (2002) Comparison of various requirements of the quality assurance procedures for 18F-FDG injection. J Nucl Med 43:1495–1506PubMedPubMedCentralGoogle Scholar
  84. 84.
    Current good manufacturing practice for positron emission tomography drugs. Fed Regist 2009;74:65409. To be codified at 21 CFR §210, 211, and 212Google Scholar
  85. 85.
    PET drug applications—content and format for NDAs and ANDAs; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) Aug 2011Google Scholar
  86. 86.
    Council Directive 89/343/EEC of 3 May 1989 extending the scope of Directives 65/65/EEC and 75/319/EEC and laying down additional provisions for radiopharmaceuticalsGoogle Scholar
  87. 87.
    Salvadori PA (2008) Radiopharmaceuticals, drug development and pharmaceutical regulations in Europe. Curr Radiopharm 1:7–11CrossRefGoogle Scholar
  88. 88.
    Meyer G-J, Waters SL, Coenen HH, Luxen A, Maziere B, Langström B (1995) PET radiopharmaceuticals in Europe: current use and data relevant for the formulation of summaries of product characteristics (SPCs). Eur J Nucl Med 22:1420–1432PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    https://www.ema.europa.eu/en. Accessed 7 Apr 2019
  90. 90.
  91. 91.
    Decristoforo A, Peñuelas I (2009) Towards a harmonized radiopharmaceutical regulatory framework in Europe? Q J Nucl Med Mol Imaging 53(4):394–401PubMedPubMedCentralGoogle Scholar
  92. 92.
    Guidelines on current good radiopharmacy practice (cGRPP) in the preparation of radiopharmaceuticals (2007) https://www.eanm.org/publications/guidelines/radiopharmacy/. Accessed 7 Apr 2019
  93. 93.
    Elsinga P, Todde S, Penuelas I, Meyer G, Farstad B, Faivre-Chauvet A, Mikolajczak R, Westera G, Gmeiner-Stopar T, Decristoforo C, The Radiopharmacy Committee of the EANM (2010) Guidance on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. Eur J Nucl Med Mol Imaging 37:1049–1062PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Elsinga PH (2012) Present and future of PET-radiopharmaceuticals. Nucl Med Rev 15(Suppl C):C13–C16Google Scholar
  95. 95.
    Decristoforo C, Patt M (2016) Are we “preparing” radiopharmaceuticals? EJNMMI Radiopharm Chem 1(1):12PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Poli M, Petroni D, Pardini S, Salvadori PA, Menichetti L (2012) Implementation of a quality assurance system according to GMP and ISO 9001:2008 standard for radiopharmaceutical production in a public research centre. Accredit Qual Assur 17:341–348CrossRefGoogle Scholar
  97. 97.
    Minghetti P, Santimaria M, D’Arpino A (2013) Classificazione dei radiofarmaci. In: Lucignani G (ed) Sperimentazione e registrazione dei radiofarmaci. Springer, MilanGoogle Scholar
  98. 98.
    Wu M, Shu J (2018) Multimodal molecular imaging: current status and future directions. Contrast Media Mol.  https://doi.org/10.1155/2018/1382183 CrossRefGoogle Scholar
  99. 99.
    Ferdová E, Baxa J, Ňaršanská A, Hes O, Fínek J, Topolčan O, Ferda J (2018) Low-dose high-resolution 18F-FDG-PET/CT using time-of-flight and point-spread function reconstructions: a role in the detection of breast carcinoma axillary lymph node metastases. Anticancer Res 38:4145–4148PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Yan J, Wu Z, Li S (2017) Extremely low dose 18F-FDG PET imaging and its potential use for lung cancer screening. Transl Cancer Res 6(Suppl 1):S99–S101CrossRefGoogle Scholar
  101. 101.
    Fällmar D, Lilja J, Kilander L, Danfors T, Lubberink M, Larsson EM, Sörensen J (2016) Validation of true low-dose 18F-FDG PET of the brain. Am J Nucl Med Mol Imaging 6(5):269–276PubMedPubMedCentralGoogle Scholar
  102. 102.
    Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RA, Rahmim A (2013) Dynamic whole body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol 58(20):7391–7418PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, Muzic RF Jr, Su K, O’Donnell JK, Faulhaber PF (2015) Image quality and diagnostic performance of a digital pet prototype in patients with oncologic diseases: initial experience and comparison with analog PET. J Nucl Med 56(9):1378–1385CrossRefGoogle Scholar
  104. 104.
    Wojtylak P, Avril N, ODonnell J, Faulhaber P (2014) Initial clinical experience in digital PET/CT. J Nucl Med 55(suppl 1):2503Google Scholar
  105. 105.
    Vandenberghe S, Mikhaylova E, D’Hoe E, Mollet P, Karp JS (2016) Recent developments in time-of-flight PET. EJNMMI Phys 3:3PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Knopp M, Wright C, Binzel K, Friel M, Moore R, Mohamed M, Giesel F, Zhang J, Maniawski P, Knopp M (2018) Ultra-fast wholebody PET/CT: a phase II intra-individual comparison trial to standard acquisition performed using digital PET/CT. J Nucl Med 59(Suppl 1):450Google Scholar
  107. 107.
  108. 108.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2020

Authors and Affiliations

  1. 1.CNR-Institute of Clinical PhysiologyPisaItaly

Personalised recommendations