Advertisement

Phosphonate modified MoS2 composite material for effective adsorption of uranium(VI) in aqueous solution

  • Ying Kou
  • Ling Zhang
  • Bo LiuEmail author
  • Lin ZhuEmail author
  • Tao DuanEmail author
Article
  • 12 Downloads

Abstract

In this work, a composite of phosphonate-functionalized MoS2 supported on carbon cloth, MoS2-IP6 NRA/CC, was prepared by the hydrothermal method to effectively remove U(VI). Results showed that the saturated adsorption capacity of MoS2-IP6 NRA/CC for uranium was 183.3 mg g−1. The adsorption process was in good agreement with Langmuir model and pseudo-second-order kinetics model. Besides, MoS2-IP6 NRA/CC showed good adsorption on uranyl ions under acidic conditions, and the material was recyclable, indicating that the material can be used as a potential radioactive nuclear processing material.

Graphic abstract

Keywords

Phosphonate Molybdenum disulfide Carbon cloth Uranium Sorption 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21671160, 21601147, 21906133); the National Key Research and Development Project (2016YFC1402502); the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (18zxhk04); the Long Shan Talent Project (17LZX306, 17LZXT04) and the Doctoral Foundation Project of Southwest University of Science and Technology (Grant No. 18zx7148).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A (2017) Universal fragment descriptors for predicting properties of inorganic crystals. Nature 8:15679Google Scholar
  2. 2.
    Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Brumfiel G (2011) Fukushima set for epic clean-up. Nature 472:146–147PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Anspaugh LR, Catlin RJ, Goldman M (1988) The global impact of the chernobyl reactor accident. Science 242:1513–1519PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Yu J, Yuan L, Wang S, Lan J, Zheng L, Xu C, Chen J, Wang L, Huang Z, Tao W, Liu Z, Chai Z, Chai Z, Gibson JK, Shi W (2019) Phosphonate-decorated covalent organic frameworks for actinide extraction: a breakthrough under highly acidic conditions. CCS Chem 1:286–295Google Scholar
  6. 6.
    Nichols KP, Pompano RR, Li L, Gelis AV, Ismagilov RF (2011) Toward mechanistic understanding of nuclear reprocessing chemistries by quantifying lanthanide solvent extraction kinetics via microfluidics with constant interfacial area and rapid mixing. J Am Chem Soc 133:15721–15729PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lin G, Zhu L, Duan T, Zhang L, Liu B, Lei J (2019) Efficient capture of iodine by a polysulfide-inserted inorganic NiTi-layered double hydroxides. Chem Eng J 378:122181CrossRefGoogle Scholar
  8. 8.
    Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, Liu S, Zhang L, Gao Y, Chen L, Sheng D, Wang Y, Diwu J, Wang J, Zhou R, Chai Z, Albrecht-Schmitt TE, Wang S (2017) Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat Commun 8:15369PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2002) Radionuclide contamination: nanometre-size products of uranium bioreduction. Nature 419:134PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Liu YL, Ye GA, Yuan LY, Liu K, Feng YX, Li ZJ, Chai ZF, Shi WQ (2015) Electroseparation of thorium from ThO2 and La2O3 by forming Th–Al alloys in LiCl–KCl eutectic. Electrochim Acta 158:277–286CrossRefGoogle Scholar
  11. 11.
    Sheng D, Zhu L, Xu C, Xiao C, Wang Y, Chen L, Diwu J, Chen J, Chai Z, Albrecht-Schmitt TE, Wang S (2017) Efficient and selective uptake of TcO4 by a cationic metal–organic framework material with open Ag+ sites. Environ Sci Technol 51:3471–3479PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Li J, Dai X, Zhu L, Xu C, Zhang D, Silver MA, Li P, Chen L, Li Y, Zuo D, Zhang H, Xiao C, Chen J, Diwu J, Farha OK, Albrecht-Schmitt TE, Chai Z, Wang S (2018) 99TcO4 remediation by a cationic polymeric network. Nat Commun 9:3007PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lei J, Guo Q, Rin D, Cui X, He R, Duan T, Zhu W (2019) Bioconcentration and bioassembly of N/S co-doped carbon with excellent stability for supercapacitors. Appl Surf Sci 488:316–325CrossRefGoogle Scholar
  14. 14.
    Sun Y, Zhang R, Ding C, Wang X, Cheng W, Chen C, Wang X (2016) Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim Cosmochim Ac 180:51–65CrossRefGoogle Scholar
  15. 15.
    Yang W, Bai ZQ, Shi WQ, Yuan LY, Tian T, Chai ZF, Wang H, Sun ZM (2013) MOF-76: from a luminescent probe to highly efficient UVI sorption material. Chem Commun 49:10415–10417CrossRefGoogle Scholar
  16. 16.
    Zou Y, Wang X, Wu F, Yu S, Hu Y, Song W, Liu Y, Wang H, Hayat T, Wang X (2016) Controllable synthesis of Ca–Mg–Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions. ACS Sustain Chem Eng 5:1173–1185CrossRefGoogle Scholar
  17. 17.
    Yang D, Song S, Zou Y, Wang XX, Yu SJ, Wen T, Wang HQ, Hayat T, Alsaedi A, Wang KX (2017) Rational design and synthesis of monodispersed hierarchical SiO2@layered double hydroxide nanocomposites for efficient removal of pollutants from aqueous solution. Chem Eng J 323:143–152CrossRefGoogle Scholar
  18. 18.
    Min X, Yang W, Hui YF, Gao CY, Sun ZM (2017) Fe3O4@ZIF-8: a magnetic nanocomposite for highly efficient UO2 2+ adsorption and selective UO2 2+/Ln3+ separation. Chem Commun 30:4199–4202CrossRefGoogle Scholar
  19. 19.
    Wang F, Liu Q, Li R, Li ZS, Zhang HS, Liu LH, Wang J (2016) Selective adsorption of uranium(VI) onto prismatic sulfides from aqueous solution. Colloid Surface A 490:215–221CrossRefGoogle Scholar
  20. 20.
    Ferrah N, Abderrahim O, Didi MA, Villemin D (2011) Sorption efficiency of a new sorbent towards uranyl: phosphonic acid grafted Merrifield resin. J Radioanal Nucl Chem 3:721–730CrossRefGoogle Scholar
  21. 21.
    Zeng Z, Yang S, Zhang L, Hua D (2016) Phosphonate-functionalized polystyrene microspheres with controlled zeta potential for efficient uranium sorption. RSC Adv 78:74110–74116CrossRefGoogle Scholar
  22. 22.
    Liu X, Li J, Wang X, Chen CL, Wang XK (2015) High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution. J Nucl Mater 466:56–64CrossRefGoogle Scholar
  23. 23.
    Cho SY, Kim SJ, Lee Y, Kim JS, Jung BW, Yoo HW, Kim J, Jung HT (2015) Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 9:9314–9321PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Li X, Li Q, Linghu W, Shen R, Zhao B, Dong L, Alsaedi A, Hayat T, Wang J, Liu J (2018) Sorption properties of U(VI) and Th(IV) on two-dimensional molybdenum disulfide (MoS2) nanosheets: effects of pH, ionic strength, contact time, humic acids and temperature. Environ Technol Innov 11:328–338CrossRefGoogle Scholar
  25. 25.
    Krishna Kumar AS, Jiang SJ, Warchoł JK (2017) Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III). ACS Omega 9:6187–6200CrossRefGoogle Scholar
  26. 26.
    Jia F, Wang Q, Wu J, Li Y, Song S (2017) Two-dimensional molybdenum disulfide as a superb adsorbent for removing Hg2+ from water. ACS Sustain Chem Eng 5:7410–7419CrossRefGoogle Scholar
  27. 27.
    Shen L, Han X, Qian J, Hua BB (2017) Amidoximated poly(vinyl imidazole)-functionalized molybdenum disulfide sheets for efficient sorption of a uranyl tricarbonate complex from aqueous solutions. RSC Adv 18:10791–10797CrossRefGoogle Scholar
  28. 28.
    Wang L, Tao W, Yuan L, Liu Z, Huang Q, Chai Z, Gibson JK, Shi W (2017) Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem Commun 53:12084–12087CrossRefGoogle Scholar
  29. 29.
    Huang S, Jiang S, Pang H, Wen T, Asiri AM, Alamry KA, Alsaedi A, Wang X, Wang S (2019) Dual functional nanocomposites of magnetic MnFe2O4 and fluorescent carbon dots for efficient U(VI) removal. Chem Eng J 368:941–950CrossRefGoogle Scholar
  30. 30.
    Tian Y, He Y, Zhu Y (2004) Low temperature synthesis and characterization of molybdenum disulfide nanotubes and nanorods. Mater Chem Phys 87:87–90CrossRefGoogle Scholar
  31. 31.
    Ren X, Wang W, Ge R, Hao S, Qu F, Du G, Asiri AM, Wei Q, Chen L, Sun X (2017) An amorphous FeMoS4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions. Chem Commun 53:9000–9003CrossRefGoogle Scholar
  32. 32.
    Yue Q, Shao Z, Chang S, Li J (2013) Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res Lett 8:425PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zhang X, Lai Z, Tan C, Zhang H (2016) Solution-processed two-dimensional MoS2 nanosheets: reparation, hybridization, and applications. Angew Chem Int Edit 55:8816–8838CrossRefGoogle Scholar
  34. 34.
    Shen L, Han X, Qian J, Hua D (2017) Amidoximated poly(vinyl imidazole)-functionalized molybdenum disulfide sheets for efficient sorption of a uranyl tricarbonate complex from aqueous solutions. RSC Adv 7:10791–10797CrossRefGoogle Scholar
  35. 35.
    Shao D, Wang X, Wang X, Hu S, Hayat T, Alsaedi A, Li J, Wang S, Hu J, Wang X (2016) Zero valent iron/poly (amidoxime) adsorbent for the separation and reduction of U(VI). RSC Adv 6:52076–52081CrossRefGoogle Scholar
  36. 36.
    Gu P, Zhao C, Wen T, Ai Y, Zhang S, Chen W, Wang J, Hu B, Wang X (2019) Highly U(VI) immobilization on polyvinyl pyrrolidine intercalated molybdenum disulfide: experimental and computational studies. Chem Eng J 359:1563–1572CrossRefGoogle Scholar
  37. 37.
    Vishnoi P, Sampath A, Waghmare UV, Rao CNR (2017) Covalent functionalization of nanosheets of MoS2 and MoSe2 by substituted benzenes and other organic molecules. Chem Eur J 23:886–895PubMedCrossRefGoogle Scholar
  38. 38.
    Chi FT, Xiong J, Hou JW, Gu M, Hu S, Wang XL (2013) Improvement in uranium adsorption properties of amidoxime-based adsorbent through cografting of amine group. J Disper Sci Technol 34:604–610CrossRefGoogle Scholar
  39. 39.
    Yang S, Hua M, Shen L, Han XL, Xu M, Kuang LJ (2018) Phosphonate and carboxylic acid co-functionalized MoS2 sheets for efficient sorption of uranium and europium: multiple groups for broad-spectrum adsorption. J Hazard Mater 354:191–197PubMedCrossRefGoogle Scholar
  40. 40.
    Löfgren S, Ågren A, Gustafsson JP, Oisson BA, Zetterberg T (2017) Impact of whole-tree harvest on soil and stream water acidity in southern Sweden based on HD-MINTEQ simulations and pH-sensitivity. For Ecol Manag 383:49–60CrossRefGoogle Scholar
  41. 41.
    Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium(VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Sylwester ER, Hudson EA, Allen PG (2000) The structure of uranium(VI) sorption complexes on silica, alumina, and montmorillonite. Geochim Cosmochim Acta 64:2431–2438CrossRefGoogle Scholar
  43. 43.
    Akyil S, Eral M (2005) Preparation of composite adsorbents and their characteristics. J Radioanal Nucl Chem 266:89–93CrossRefGoogle Scholar
  44. 44.
    Zou Y, Wang P, Yao W, Wang X, Liu Y, Yang D, Wang L, Hou J, Alsaedi A, Hayat T, Wang X (2017) Synergistic immobilization of UO2 2+ by novel graphitic carbon nitride@layered double hydroxide nanocomposites from wastewater. Chem Eng J 330:573–584CrossRefGoogle Scholar
  45. 45.
    Jung Y, Kim S, Park SJ, Kim JM (2008) Preparation of functionalized nanoporous carbons for uranium loading. Colloid Surf A 313–314:292–295CrossRefGoogle Scholar
  46. 46.
    Ladeira ACQ, Gonçalves CR (2007) Influence of anionic species on uranium separation from acid mine water using strong base resins. J Hazard Mater 148:499–504PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Vidya K, Gupta NM, Selvam P (2004) Influence of pH on the sorption behaviour of uranyl ions in mesoporous MCM-41 and MCM-48 molecular sieves. Mater Res Bull 39:2035–2048CrossRefGoogle Scholar
  48. 48.
    Fan F, Ding H, Bai J, Wu X, Lei F, Tian W, Wang Y, Qin Z (2011) Sorption of uranium(VI) from aqueous solution onto magnesium silicate hollow spheres. J Radioanal Nucl Chem 289:367–374CrossRefGoogle Scholar
  49. 49.
    Crookes-Goodson WJ, Slocik JM, Naik RR (2008) Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev 37:2403–2412PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Wu XL, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science and TechnologySouthwest University of Science and TechnologyMianyangChina
  2. 2.National Co-llaborative Innovation Center for Nuclear Waste and Environmental SafetySouthwest University of Science and TechnologyMianyangChina
  3. 3.Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and TechnologyMianyangChina

Personalised recommendations