Advertisement

Octaphosphinoylated para-tert-butylcalix[8]arene as an extracting agent for uranyl ions in an acidic nitrate medium: study of the extracted uranyl calixarene compound

  • Flor de María RamírezEmail author
  • Ericka Serrano-Valero
  • Sabi Varbanov
Article
  • 6 Downloads

Abstract

The uranyl ion extraction properties of an octaphosphinoylated para-tert-butylcalix [8] arene (B8bL8) in CHCl3 from an aqueous–acidic–saline medium containing a uranyl nitrate salt were investigated. UV–Vis and luminescence techniques allowed us to evaluate the extraction capability and loading capacity of B8bL8 towards uranyl ions. Both techniques revealed a 2 UO22+:1 B8bL8 stoichiometry for the main extracted species in the organic phases. IR, NAA, and XPS analyses of the pure solid recovered from the extracts demonstrated such a stoichiometry. B8bL8 in CHCl3 would be highly useful for the treatment of nuclear or radioactive wastes containing uranium in rich aqueous–acidic–saline media.

Keywords

Uranyl extraction Fluorescence Calixarene loading capacity Rich acidic-saline-aqueous phases 

Notes

Acknowledgements

This work was supported by CONACYT [Grant No. 36689-E], Mexico; and the Swiss National Science Foundation [Grant SCOPES 2000–2002: No. 7BUPJ062293.00/1], Switzerland. We thank Ricardo Soria from the analytical department for his help in the uranium determination by ICP and the technicians from the chemistry department of ININ for their help. We thank Carmen Lopez from the reactor department for the uranium measurements by NAA. We thank Dr. Enrique Morales-Avila for the XPS measurements and Dr. Blanca Ocampo-García for the MIR measurements of the solid extract. Last but not least, we profoundly acknowledge and thank Prof. Jean-Claude Bünzli for the invaluable support in this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest with respect to the research, authorship, and/or publication of this article.

Supplementary material

10967_2019_6969_MOESM1_ESM.docx (494 kb)
Supplementary material 1 (DOCX 495 kb)

References

  1. 1.
    Mandolini L, Ungaro R (eds) (2000) Calixarenes in action. Imperial College Press, LondonGoogle Scholar
  2. 2.
    Lumetta GJ, Rogers RD, Gopalan AS (eds) (2000) Calixarenes for separations, ACS symposium series, vol 757. American Chemical Society, WashingtonGoogle Scholar
  3. 3.
    Talotta G, Gaeta C, Neri P (2015) Large calixarenes: synthesis and properties. In: Talotta C, Gaeta C, Neri P (eds) Reference module in chemistry, molecular science and chemical engineering. Elsevier, Amsterdam.  https://doi.org/10.1016/b978-0-12-409547-2.10828-5 CrossRefGoogle Scholar
  4. 4.
    Beer PD, Brindley GD, Fox OD, Grieve A, Ogden MI, Szemes F, Drew MGB (2002) Acid-amide calixarene ligands for uranyl and lanthanide ions: synthesis, structure, coordination and extraction studies. J Chem Soc Dalton Trans 2002(16):3101–3111CrossRefGoogle Scholar
  5. 5.
    FdeM R, Varbanov S, Bünzli JCG, Rivas-Silva JF, Ocaña-Bribiesca MA, Cortés-Jácome MA, Toledo-Antonio JA (2012) Uranyl complexes formed with a para-t-butylcalix[4]arene bearing phosphinoyl pendant arms on the lower rim. Solid and solution studies. Radiochim Acta 100:359–369CrossRefGoogle Scholar
  6. 6.
    FdeM R, Tosheva T, Tashev E, García-Villafaña E, Shenkov S, Varbanov S (2013) Synthesis of a para-tert-octylcalix[4]arene fitted with phosphinoyl pendant arms and its complexation properties towards f-elements. Polyhedron 56:123–133CrossRefGoogle Scholar
  7. 7.
    FdeM R, Palomares-Castillo K, Ocampo-García B, Ramírez-Avila E, Varbanov S (2017) Physicochemical behaviour of a dinuclear uranyl complex formed with an octaphosphinoylated para-tert-butylcalix[8]arene. Spectroscopic studies in solution and in the solid state. Polyhedron 123:75–89CrossRefGoogle Scholar
  8. 8.
    Puntus LN, Chauvin AS, Varbanov S, Bünzli JCG (2007) Lanthanide complexes with a calix[8]arene bearing phosphinoyl pendant arms. Eur J Inorg Chem 22:2315–2326CrossRefGoogle Scholar
  9. 9.
    Arnaud-Neu F, Browne JK, Byrne D, Marrs DJ, McKervey MA, O’Hagan P, Schwing-Weill MJ, Walker A (1999) Extraction and complexation of alkali, alkaline earth, and f-element cations by calixaryl phosphine oxides. Chem Eur J 5:175–186CrossRefGoogle Scholar
  10. 10.
    Kongor AR, Mehta VA, Modi KM, Panchal MK, Dey SA, Panchal US, Jain VK (2016) Calix-based nanoparticles: a review. Top Curr Chem 374:1–46CrossRefGoogle Scholar
  11. 11.
    Mokhtari B, Pourabdollah K (2011) Binding abilities and extractive applications of nano-baskets of calixarenes. Asian J Chem 23:4717–4734Google Scholar
  12. 12.
    Gezici O, Bayrakci M (2015) Calixarene-engineered surfaces and separation science. J Incl Phenom Macrocycl Chem 83:1–18CrossRefGoogle Scholar
  13. 13.
    Mandalia HC, Jain VK, Pattanaik BN (2012) Application of super-molecules in solar energy conversion: a review. Res J Chem Sci 2:89–102Google Scholar
  14. 14.
    Casnati A, Ca ND, Fontanella M, Sansone F, Ugozzolli F, Ungaro R, Liger K, Dozol JF (2005) Calixarene-based picolinamide extractants for selective An/Ln separation from radioactive waste. Eur J Org Chem 11:2338–2348CrossRefGoogle Scholar
  15. 15.
    Dam HH, Reinhoudt DN, Verboom W (2007) Multicoordinate ligands for actinide/lanthanide separations. Chem Soc Rev 36:367–377CrossRefGoogle Scholar
  16. 16.
    Sather AC, Berryman OB, Rebek J Jr (2010) Selective recognition and extraction of uranyl ion. J Am Chem Soc 132:13572–13574CrossRefGoogle Scholar
  17. 17.
    Leoncini A, Huskens J, Verboom W (2017) Ligands for f-element extraction used in the nuclear fuel cycle. Chem Soc Rev 46:7229–7273CrossRefGoogle Scholar
  18. 18.
    Yüksel D (2015) Molecular design of calix[4]arene derivatives for uranyl ion extraction from aqueous media. BgNS Trans 20:137–139Google Scholar
  19. 19.
    Sun X, Luo H, Dai S (2012) Ionic-liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128CrossRefGoogle Scholar
  20. 20.
    Ramírez FM, Varbanov S, Padilla J, Bünzli JCG (2008) Physicochemical properties and theoretical modeling of actinide complexes with a para-tert-butylcalix[6]arene bearing phosphinoyl pendants. Extraction capability of the calixarene toward f elements. J Phys Chem B 112:10976–10988CrossRefGoogle Scholar
  21. 21.
    FdeM R, Varbanov S, Bünzli JCG, Scopelliti R (2011) 5f-Element complexes with a p-tert-butylcalix[4]arene bearing phosphinoyl pendant arms: separation from rare earths and structural studies. Inorg Chim Acta 378:163–168CrossRefGoogle Scholar
  22. 22.
    Bouvier-Capely C, Manoury A, Legrand A, Bonthonneau JP, Cuenot F, Rebière F (2009) The use of calix[6]arene molecules for actinides analysis in urine and drinking water: an alternative to current procedures. J Radioanal Nucl Chem 282:611–615CrossRefGoogle Scholar
  23. 23.
    Grives S, Phan G, Morat GD, Suhard D, Rebière F, Fatta E (2015) Ex-vivo uranium decontamination efficiency on wounded skin and in vitro skin toxicity of a calixarene-loaded nanoemulsion. J Pharm Sci 104:2008–2017CrossRefGoogle Scholar
  24. 24.
    Taylor R (2015) Reprocessing and recycling of spent nuclear fuel. Woodhead Publishing series in energy no. 79. Woodhead Publishing, CambridgeGoogle Scholar
  25. 25.
    FdeM R, Varbanov S, Cécil C, Muller G, Fatin-Rouge N, Scopelliti R, Bünzli J-CG (2002) A p-tert-butylcalix[6]arene bearing phosphinoyl pendant arms for the complexation and sensitisation of lanthanide ions. J Chem Soc Dalton Trans 2002(23):4505–4513Google Scholar
  26. 26.
    Nagasaki T, Shinkai S (1991) Synthesis and solvent extraction studies of novel calixarene-based uranophiles bearing hydroxamic groups. J Chem Soc Perkin Trans 2:1063–1066CrossRefGoogle Scholar
  27. 27.
    Nagasaki T, Shinkai S, Matsuda T (1990) Synthesis and solvent extraction properties of a novel calixarene-based uranophiles bearing hydroxamate groups. J Chem Soc Perkin Trans 1:2617–2618CrossRefGoogle Scholar
  28. 28.
    Moulin C, Laszak I, Moulin V, Tondre C (1998) Time-resolved laser-induced fluorescence as a unique tool for low-level uranium speciation. Appl Spectrosc 52:528–535CrossRefGoogle Scholar
  29. 29.
    Teterin YA, Teterin AY (2004) The structure of X-ray photoelectron spectra of light actinide compounds. Russ Chem Rev 73:541–580CrossRefGoogle Scholar
  30. 30.
    Schindler M, Hawthorne FC, Freund MS, Burns PC (2009) XPS spectra of uranyl minerals and synthetics: I. The U4f spectrum. Geochim Cosmochim Acta 73:2471–2487CrossRefGoogle Scholar
  31. 31.
    Schindler M, Hawthorne FC, Freund MS, Burns PC (2009) XPS spectra of uranyl minerals and synthetics: II. The O1s spectrum. Geochim Cosmochim Acta 73:2488–2509CrossRefGoogle Scholar
  32. 32.
    Zhang S, Fu YQ, Bui XL, Du HJ (2004) XPS study of diamond-like carbon-based nanocomposite films. Int J Nanosci 3:797–802CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Depto. de QuímicaInstituto Nacional de Investigaciones NuclearesOcoyoacacMexico
  2. 2.Institute of Organic Chemistry with Center of PhytochemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations