Advertisement

Determination of ionic 68Ga impurity in radiopharmaceuticals: major revision of radio-HPLC methods

  • Alesya Ya. MarukEmail author
  • Anton A. Larenkov
Article
  • 6 Downloads

Abstract

Determination of purity of 68Ga-radiopharmaceuticals is an extremely important part of quality control in routine clinical practice as well as during R&D of 68Ga-radiopharmaceuticals. HPLC results do not always match TLC results. This uncertainty most likely comes from nonspecific sorption of ionic 68Ga on C18 phase. The aim of this study was to develop reliable HPLC analysis procedure. It was shown that simple replacement of trifluoroacetic acid in the eluent with citric acid results into change of the results obtained using HPLC analysis.

Keywords

HPLC TLC 68Ga Quality control of radiopharmaceuticals Radiochemical purity Citric acid 

Notes

Acknowledgements

The reported study was partly funded by Russian Foundation for Basic Research, Project No. 19-33-70048.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Fani M, André JP, Maecke HR (2008) 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging 3:53–63CrossRefGoogle Scholar
  2. 2.
    Martins AF, Pratac MIM, Rodriguese SPJ, Geraldes CFGC, Rissg PJ, Amor-Coarasah A, Burchardth C, Krollh C, Roesch F (2013) Spectroscopic, radiochemical, and theoretical studies of the Ga3+-N-2-hydroxyethyl piperazine-N′-2-ethanesulfonic acid (HEPES buffer) system: Evidence for the formation of Ga3+-HEPES complexes in 68Ga labeling reactions. Contrast Media Mol Imaging 8:265–273CrossRefGoogle Scholar
  3. 3.
    Larenkov AA, Bruskin AB, Kodina GE (2015) Preparation of highly purified 68Ga solutions via ion exchange in hydrochloric acid–ethanol mixtures. J Radioanal Nucl Chem 305:147–160CrossRefGoogle Scholar
  4. 4.
    Xu T, Chen Y (2019) Research progress of [68Ga]Citrate PET’s utility in infection and inflammation imaging: a review. Mol Imaging Biol.  https://doi.org/10.1007/s11307-019-01366-x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gaertner FC, Plum T, Kreppel B, Eppard E, Meisenheimer M, Strunk H, Bundschuh RA, Sinnes JP, Rösch F, Essler M (2019) Clinical evaluation of [68Ga]Ga-DATA-TOC in comparison to [68Ga]Ga-DOTA-TOC in patients with neuroendocrine tumours. Nucl Med Biol 76:1–9CrossRefGoogle Scholar
  6. 6.
    Kolenc Peitl P, Rangger C, Garnuszek P, Mikolajczak R, Hubalewska-Dydejczyk A, Maina T, Erba P, Decristoforo C (2019) Clinical translation of theranostic radiopharmaceuticals: current regulatory status and recent examples. J Label Compd Radiopharm.  https://doi.org/10.1002/jlcr.3712 CrossRefGoogle Scholar
  7. 7.
    Skrabkova HS, Bubenschikov VB, Kodina GE, Lunev AS, Larenkov AA, Epshtein NB, Kabashin AV (2019) 68Ga-adsorption on the Si-nanoparticles. In: IOP conference series: materials science and engineering, vol 487, no 1, p 012026CrossRefGoogle Scholar
  8. 8.
    Roesch F, Riss JP (2010) The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem 10:1633–1668CrossRefGoogle Scholar
  9. 9.
    EDQM (2018) In: Eur Pharmacopoeia 9.0. Gallium (68Ga) Edotreotide Injection (2482)Google Scholar
  10. 10.
    Larenkov AA, Maruk AY, Kodina GE (2018) Intricacies of the determination of the radiochemical purity of 68Ga preparations: possibility of sorption of ionic 68Ga species on reversed-phase columns. Radiochemistry 60:625–633CrossRefGoogle Scholar
  11. 11.
    Vis R, Lavalaye J, van de Garde EMW (2015) GMP-compliant 68Ga radiolabelling in a conventional small-scale radiopharmacy: a feasible approach for routine clinical use. EJNMMI Res 5:1–7CrossRefGoogle Scholar
  12. 12.
    Larenkov A, Maruk A (2016) Radiochemical purity of 68Ga-BCA-peptides: separation of all 68Ga species with a single iTLC strip. World Acad Sci Eng Technol Int J Chem Mol Nucl Mater Metall Eng 10:1120–1127Google Scholar
  13. 13.
    Makichyan AG, Larenkov AA (2018) iTLC method for analysis of 68Ga radiophamaceuticals. EJNMMI Radiopharm Chem 3(Suppl 1):13Google Scholar
  14. 14.
    Maruk AY, Larenkov AA, Machulkin AE, Rakhimov MG, Lunyova KA, Lunyov AS, Zhukova MV, Krasnopyorova AS (2019) Folic acid based radiopharmaceuticals for PET-diagnostics. In: XI international conference on chemistry for young scientists ‘Mendeleev 2019’, Book of abstracts, p 296Google Scholar
  15. 15.
    Bubenshchikov VB, Maruk AY, Bruskin AB, Kodina GE (2016) Preparation and properties of 68Ga complexes with RGD peptide derivatives. Radiochemistry 58:506–512CrossRefGoogle Scholar
  16. 16.
    Larenkov AA, Bruskin AB, Kodina GE (2014) Preparation of high-purity 68Ga solutions by ion exchange in mixed acetone-hydrochloric acid medium. Radiochemistry 56:57–65CrossRefGoogle Scholar
  17. 17.
    Garnuszek P, Maurin M, Radzik M (2018) Radiochemical purity determination of 68Ga-labelled radiopharmaceuticals. Are the TLC and HPLC results complementary? EJNMMI Radiopharm Chem 3:38Google Scholar
  18. 18.
    Morfin JF, Tóth É (2011) Kinetics of Ga(NOTA) formation from weak Ga-citrate complexes. Inorg Chem 50:10371–10378CrossRefGoogle Scholar
  19. 19.
    Jensen SB, Nielsen KM, Mewis D, Kaufmann J (2013) Fast and simple one-step preparation of 68Ga citrate for routine clinical PET. Nucl Med Commun 34:806–812CrossRefGoogle Scholar
  20. 20.
    Lunev AS, Larenkov AA, Petrosova KA, Klementyeva OE, Kodina GE (2016) Fast PET imaging of inflammation using 68Ga-citrate with Fe-containing salts of hydroxy acids. EJNMMI Radiopharm Chem 1:14Google Scholar
  21. 21.
    Daneshfar A, Baghlani M, Sarabi RS, Sahraei R, Abassi S, Kaviyan H, Khezeli T (2012) Solubility of citric, malonic, and malic acids in different solvents from 303.2 to 333.2 K. Fluid Phase Equilib 313:11–15CrossRefGoogle Scholar
  22. 22.
    Sharifi M, Yousefnia H, Bahrami-Samani A, Jalilian AR, Zolghadri S, Alirezapour B, Geramifar P, Maus S, Beiki D (2017) Optimized production, quality control, biological evaluation and PET/CT imaging of 68Ga-PSMA-617 in breast adenocarcinoma model. Radiochim Acta 105(5):399–407CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Russian State Research Center − Burnasyan Federal Medical Biophysical Center of Federal Medical Biological AgencyMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of SciencesMoscowRussia
  3. 3.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations