Advertisement

210Po in the environment: insight into the naturally occurring polonium isotope

  • P. ThakurEmail author
  • A. L. Ward
Article
  • 44 Downloads

Abstract

Polonium is rapidly emerging as an international environmental health concern primarily because of the recent rise in hydraulic fracturing (fracking). Recovery of unconventional oil and gas generates produced water containing natural radioactivity, which is increasing the radiological impact of 210Po. In this context, accurate measurements of 210Po in environmental samples is crucial because 210Po is the main contributor to the natural radiation dose received by all living organisms. However, the analytical chemistry of polonium is complicated, primarily due to its volatility. This review highlights recent analytical progress and challenges in determination of 210Po in the environmental and biological samples.

Keywords

Polonium Actinides Separation Alpha spectroscopy Microprecipitation Autodeposition 

Notes

Acknowledgements

This research is supported by grant from US Department of Energy, Carlsbad Field Office of DOE through Grant No. DE-EM 0002423.

References

  1. 1.
    Curie P, Curie M (1898) Radiations from compounds of uranium and of thorium. Comptes Rendus 126:1898Google Scholar
  2. 2.
    National Nuclear Data Center ‘‘NNDC’’ (2013) Brookhaven national laboratory. http://www.nndc.bnl.gov
  3. 3.
    Bagnall KW, Grudpan K, Mabius S, Manzel H, Seidel A, Tapper W, Buschbeck KC, Bius SM, Nzel HM, Pper WT (1990) Gmelin: handbook of inorganic and organometallic chemistry: Po–polonium, supplement vol 1, element, metal, compounds, chemistry in solution. Springer, New YorkGoogle Scholar
  4. 4.
    Figgins P (1961) The radiochemistry of polonium. National academies of sciences nuclear science series 3037.S. Atomic Energy Commission, U.S. Department of Commerce, SpringfieldGoogle Scholar
  5. 5.
    Ansoborlo E, Berard P, Den Auwer C, Leggett R, Menetrier F, Younes A, Montavon G, Moisy P (2012) Review of chemical and radiotoxicological properties of polonium for internal contamination purposes. Chem Res Toxicol 25:1551–1564PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Miller C, Whitcomb R, Ansari A, McCurley C, Nemhauser N, Jones R (2012) Murder by radiation poisoning. Implications for public health. J Environ Health 74:8–13PubMedPubMedCentralGoogle Scholar
  7. 7.
    Matthews KM, Kim CK, Martin P (2007) Determination of 210Po in environmental materials: a review of analytical methodology. Appl Radiat Isot 65:267–279PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Persson RBR (1970) 55Fe, 90Sr, 134Cs, 137Cs, and 210Po in the biosphere. Thesis Lund UniversityGoogle Scholar
  9. 9.
    Poet SE, Moore HE, Martell EA (1972) Lead 210, bismuth 210, and polonium 210 in the atmosphere: accurate ratio measurement and application to aerosol residence time determination. J Geophys Res 77:6515–6527CrossRefGoogle Scholar
  10. 10.
    Jia G, Belli M, Blasi M, Marchetti A, Rosamilia S, Sansone U (2001) Determination of 210Pb and 210Po in mineral and biological environmental samples. J Radioanal Nucl Chem 247:491–499CrossRefGoogle Scholar
  11. 11.
    Baskaran M (2011) Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. J Environ Radioact 102:500–513PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Jaworowski Z, Grzybowska D (1977) Natural radionuclides in industrial and rural soils. Sci Tot Environ 7:45–52CrossRefGoogle Scholar
  13. 13.
    Nelson AW (2016) Naturally occurring radioactive materials associated with unconventional drilling for natural gas. Ph.D Thesis, University of IowaGoogle Scholar
  14. 14.
    Carvalho F, Fernandes S, Fesenko S, Holm E, Howard B, Martin P, Phaneuf M, Porcelli D, Pröhl G. Twining J (2017) The environmental behavior of polonium. Technical Reports Series No. 484, International Atomic Energy Agency (IAEA), ViennaGoogle Scholar
  15. 15.
    Sopka K, Sopka E (2010) The bonebrake theological seminary: top-secret manhattan project site. Phys Perspect 12:338–349CrossRefGoogle Scholar
  16. 16.
    Boice JD Jr, Cohen SS, Mumma MT, Ellis ED, Cragle DL, Eckerman KF, Wallace PW, Chadda B, Sonderman JS, Wiggs LD, Richter BS, Leggett RW (2014) Mortality among mound workers exposed to Polonium-210 and other sources of radiation, 1944–1979. Radiation Res 181:208–228PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Skwarzec B, Struminska DI, Ulatowski J, Golebiowski M (2001) Determination and distribution of 210Po in tobacco plants from Poland. J Radioanal Nucl Chem 250:319–322CrossRefGoogle Scholar
  18. 18.
    Savidou A, Kehagia K, Eleftheriadis K (2006) Concentration levels of 210Pb and 210Po in dry tobacco leaves in Greece. J Environ Radioact 85:94–102PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    UNSCEAR. Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Report to the General Assembly, with scientific annexes. United Nations, New YorkGoogle Scholar
  20. 20.
    Spencer H, Holtzman RB, Kramer L, Ilcewicz FH (1977) Metabolic balances of 2l0Pb and 2l0Po at natural levels. Radiat Res 69:166–184PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Eitrheim ES, May D, Forbes TZ, Nelson AW (2016) Disequilibrium of naturally occurring radioactive materials (NORM) in drill cuttings from a horizontal drilling operation. Environ Sci Technol Lett 3:425–429CrossRefGoogle Scholar
  22. 22.
    Sethy NK, Sutar AK, Rath P, Jha VN, Ravi PM, Tripathi RM (2015) A review of radio chemical analysis and estimation of 210Po in soil matrices. J Rad Res Appl Sci 8:590–596Google Scholar
  23. 23.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  24. 24.
    Ziv D, Efros I (1959) Determination of the solubility of polonium hydroxide. Radiokhim 1:290–294Google Scholar
  25. 25.
    Ulrich HJ, Degueldre C (1993) The sorption of 210Pb, 210Bi and 210Po on montmorillonite: a study with emphasis on reversibility aspects and on the effect of the radioactive decay of adsorbed nuclides. Radiochim Acta 62:81–90CrossRefGoogle Scholar
  26. 26.
    Suganuma H, Hataye I (1981) Solvent extraction study on the hydrolysis of tracer concentration of Po(IV) in chloride solution. J Inorg Nucl Chem 43:2511–2515CrossRefGoogle Scholar
  27. 27.
    Hataye I, Suganuma H, Sakata M (1981) Solvent extraction study on the hydrolysis of tracer concentration of polonium (IV) in nitrate solutions. J Inorg Nucl Chem 43:2575–2577CrossRefGoogle Scholar
  28. 28.
    Veronneau C, Aupiais J, Dacheux N (2000) Selective determination of polonium by photon electron rejecting alpha liquid scintillation (PERALS® System). Anal Chim Acta 415:229–238CrossRefGoogle Scholar
  29. 29.
    Bagnall K, Robertson D (1957) Polonium monosulphide. J Chem Soc 204:1044–1047CrossRefGoogle Scholar
  30. 30.
    Martin A, Blanchard RL (1969) The thermal volatilization of caesium-137, polonium-210 and lead-210 from in vivo labelled samples. Analyst 94:441–446PubMedCrossRefGoogle Scholar
  31. 31.
    Heyraud M, Cherry RD (1979) Polonium-210 and lead-210 in marine food chains. Mar Biol 52:227–236CrossRefGoogle Scholar
  32. 32.
    Jia G, Torri G (2007) Determination of 210Pb and 210Po in soil or rock samples containing refractory matrices. Appl Radiat Isot 65:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Mabuchi H (1963) On the volatility of some polonium compounds. J Inorg Nucl Chem 25:657–660CrossRefGoogle Scholar
  34. 34.
    Henricsson F, Ranebo Y, Holm E, Roos P (2011) Aspects on the analysis of 210Po. J Environ Radioact 102:415–419PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Seiner BN, Morley SM, Beacham TA, Haney MM, Gregory S, Metz L (2014) Effects of digestion, chemical separation, and deposition on Po-210 quantitative analysis. J Radioanal Nucl Chem 302:673–678CrossRefGoogle Scholar
  36. 36.
    Lin Z, Wu Z (2009) Analysis of polonium-210 in food products and bioassay samples by isotope-dilution alpha spectrometry. Appl Radiat Isot 67:907–912PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Cunha IL, Bueno L, Favaro DIT, Maihara VA, Cozzollino S (2001) Analysis of 210Pb and 210Po in Brazilian foods and diets. J Radioanal Nucl Chem 247:447–450CrossRefGoogle Scholar
  38. 38.
    Swift B (1998) Dating human skeletal remains: investigating the viability of measuring the equilibrium between 210Po and 210Pb as a means of estimating the post-mortem interval. Forensic Sci Int 98:119–126PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ham GJ, Ewers LW, Clayton RF (1997) Improvements on lead-210 and polonium-210 determination in environmental materials. J Radioanal Nucl Chem 226:61–65CrossRefGoogle Scholar
  40. 40.
    Martin P, Hancock GJ, Johnston A, Murray AS (1998) Natural series radionuclides in traditional north Australian aboriginal foods. J Environ Radioact 40:37–58CrossRefGoogle Scholar
  41. 41.
    Cho B, Hong G-H, Kim SH, Lee H (2016) Annual effective dose of 210Po from sea food origin (Oysters and Mussels) in Korea. J Radiat Prot Res 41:245–252CrossRefGoogle Scholar
  42. 42.
    Prabhath RK, Sreejith SR, Nair MG, Rao DD, Pradeepkumar KS (2015) Determination of 210Po concentration in commercially available infant formulae and assessment of daily ingestion dose. J Radiat Res Appl Sci 8:470–476CrossRefGoogle Scholar
  43. 43.
    Sreejith SR, Nair MG, Rao DD (2014) Evaluation of sample pretreatment methods for analysis of polonium isotopes in herbal medicines. J Environ Radioact 138:417–420PubMedCrossRefGoogle Scholar
  44. 44.
    Jia G (2018) Simultaneous determination of 210Po and 210Pb in solid samples: a new method for 210Pb determination. Appl Radiat Isoto 137:12–17CrossRefGoogle Scholar
  45. 45.
    Chen Q, Hou X, Dahlgaard H, Nielsen SP, Aarkrog A (2001) A rapid method for the separation of 210Po from 210Pb by TIOA extraction. J Radioanal Nucl Chem 249:587–593CrossRefGoogle Scholar
  46. 46.
    Szarlowicz K (2018) Optimization of the radiochemical procedure of 210Po determination in small amounts of sediment samples. J Environ Sci Technol, Int.  https://doi.org/10.1007/s13762-018-2156-2 CrossRefGoogle Scholar
  47. 47.
    Kılıç Ö, Belivermis M, Çotuk Y, Topçuoglu S (2014) Radioactivity concentrations in mussel (Mytilus galloprovincialis) of Turkish Sea coast and contribution of 210Po to the radiation dose. Mar Pollut Bull 80:325–329PubMedCrossRefGoogle Scholar
  48. 48.
    Kılıç Ö, Belivermis M, Gonülal O, Sezer N, Carvalho FP (2018) 210Po and 210Pb in fish from northern Aegean Sea and radiation dose to fish consumers. J Radioanal Nucl Chem 318:1189–1199CrossRefGoogle Scholar
  49. 49.
    Belivermis M, Kılıç Ö, Efe E, Sezer N, Gonülal O, Arslan Kaya TN (2019) Mercury and Po-210 in mollusc species in the island of Gökçeada in the north-eastern Aegean Sea: bioaccumulation and risk assessment for human consumers. Chemosphere 235:876–884PubMedCrossRefGoogle Scholar
  50. 50.
    Sanchez-Cabeza JA, Masqué P, Ani-Ragolta I (1998) 210Pb and 210Po analysis in sediments and soils by microwave acid digestion. J Radioanal Nucl Chem 227:19–22CrossRefGoogle Scholar
  51. 51.
    Planinšek P, Benedik L, Smodiš B (2013) Comparison of various dissolution techniques for determination of Po-210 in biological samples. Appl Radiat Isot 81:53–56PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Takizawa Y, Hisamatsu S, Abe T, Yamashita J (2000) Actinides and long-lived radionuclides in tissues of the Japanese population: summary of the past 20-year studies. J Radioanal Nucl Chem 243:305–312CrossRefGoogle Scholar
  53. 53.
    Beals MD (1989) Microwave digestion and subsequent separation of some uranium and thorium series elements from soil and sediments. In: 35th annual conference on bioassy, analytical and environmental radiochemistry, Charlestion, SC, USAGoogle Scholar
  54. 54.
    Sadi BB, Chen J, Kochermin V, Tung G, Chiorean S (2016) A faster sample preparation method for determination of polonium-210 in fish. J Radioanal Nucl Chem 308:843–850CrossRefGoogle Scholar
  55. 55.
    Maxwell SL, McAlister DR, Sudowe R (2019) Rapid method to determine polonium-210 in urban matrices. Appl Radiat Isot 148:270–276PubMedCrossRefGoogle Scholar
  56. 56.
    Maxwell SL, McAlister DR, Sudowe R (2019) Novel rapid oxidizing fusion method to determine polonium -210 in air filter. Appl Radiat Isot 153:108833PubMedCrossRefGoogle Scholar
  57. 57.
    Meli MA, Desideri D, Roselli C, Feduzi L (2009) Po-210 determination in urines of people living in central Italy. J Environ Radioact 100:84–88PubMedCrossRefGoogle Scholar
  58. 58.
    Manickam E, Sdraulig S, O’Brien R (2010) An improved and rapid radiochemical method for the determination of polonium-210 in urine. Aust J Chem 63:38–46CrossRefGoogle Scholar
  59. 59.
    U.S. Department of Energy (1997) Polonium in water and urine Po-01-RC, 28th ed., EML-HASL300Google Scholar
  60. 60.
    Desideri D, Meli MA, Feduzi L, Roselli C, Rongoni A, Saetta D (2007) U, 234U, 226Ra, 210Po, concentrations of bottled mineral waters in Italy and their dose contribution. J Environ Radioact 94:86–97PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Fonollosa E, Peñalver A, Aguilar C, Borrull F (2015) Polonium-210 levels in different environmental samples. Environ Sci Pollut Res Int 22:20032–20040PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Sekudewicz I, Gąsiorowski M (2019) Determination of the activity and the average annual dose of absorbed uranium and polonium in drinking water from Warsaw. J Radioanal Nucl Chem 319:1351–1358CrossRefGoogle Scholar
  63. 63.
    Biggin CD, Cook GT, MacKenzie AB, Pates JM (2002) Time-efficient method for the determination of 210Pb, 210Bi, And 210Po activities in seawater using liquid scintillation spectrometry. Anal Chem 74:671–677PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kim C-K, Lee M, Martin P (2009) Method validation of a procedure for determination of 210Po in water using DDTC solvent extraction and Sr resin. J Radioanal Nucl Chem 279:639–646CrossRefGoogle Scholar
  65. 65.
    Lee MH, Lee CH, Song K, Kim CK, Martin P (2010) Determination of polonium nuclides in a water sample with solvent extraction method. Bull Korean Chem Soc 31:2488–2492CrossRefGoogle Scholar
  66. 66.
    Lee HM, Hong GH, Baskaran M, Kim SH, Kim YL (2014) Evaluation of plating conditions for the recovery of 210Po on a Ag planchet. Appl Radiat Isot 90:170–176PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Rushing DE (1966) Determination of dissolved polonium-210 in water by coprecipitacion with tellurium by stannous chloride. Anal Chem 38:900–905PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Holgye Z (2007) Co-precipitation of polonium with bismuth phosphate. J Radioanal Nucl Chem 274:647–649CrossRefGoogle Scholar
  69. 69.
    Maxwell SL, Culligan BK, Hutchison JB, Utsey RC, McAlister DR (2013) Rapid determination of 210Po in water samples. J Radioanal Nucl Chem 298:1977–1989CrossRefGoogle Scholar
  70. 70.
    Wildgust MA, McDonald P, White KN (1998) Temporal changes of 210Po in temperate coastal waters. Sci Tot Environ 214:1–10CrossRefGoogle Scholar
  71. 71.
    Gasco C, Anton MP, Delfanti R, Gonzalez AM, Meral J, Papucci C (2002) Variation of the activity concentrations and fluxes of natural (210Po, 210Pb) and anthropogenic (239,240Pu, 137Cs) radionuclides in the Strait of Gibraltar (Spain). J Environ Radioact 62:241–262PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Haridasan PP, Paul AC, Desai MVM (2001) Natural radionuclides in the aquatic environment of a phosphogypsum disposal area. J Environ Radioact 53:155–165PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nozaki Y, Tsunogai S (1973) A simultaneous determination of lead-210 and polonium-210 in seawater. Anal Chim Acta 64:209–216PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Jia G, Torri G, Petruzzi M (2004) Distribution coefficients of polonium between 5% TOPO in toluene and aqueous hydrochloric and nitric acids. Appl Radiat Isot 61:279–282PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Jia G, Torri G (2008) Distribution coefficients of polonium between 0.75 M HDEHP in cyclohexane and aqueous hydrochloric and nitric acids. Open Inorg Chem J 2:18–21CrossRefGoogle Scholar
  76. 76.
    Martin P, Hancock G (1992) Routine analysis of naturally occurring radionuclidein environmental samples by alpha-particle spectrometry. Research report 7. Canberra: Australian Government Publishing ServiceGoogle Scholar
  77. 77.
    Hampson BL, Tennant D (1973) Simultaneous determination of actinide nuclides in environmental materials by solvent extraction and alpha spectrometry. Analyst 98:873–885PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Kmak KN, Despotopulos JD, Shaughnessy DA (2017) Separation of Pb, Bi and Po by cation exchange resin. J Radioanal Nucl Chem 314:985–989CrossRefGoogle Scholar
  79. 79.
    Strelow F (1988) Comparative distribution coefficients for some elements with a macroporous cation exchange resin in HNO3 and HCl. Solv Extr Ion Exch 6:323–334CrossRefGoogle Scholar
  80. 80.
    Horwitz EP, Chiarizia R, Dietz ML (1992) A novel strontium-selective extraction chromatographic resin. Sov Extr Ion Exch 10:313–336CrossRefGoogle Scholar
  81. 81.
    Vajda N, La Rosa J, Zeisler R, Danesi P, Kis-Benedek GY (1997) A novel technique for the simultaneous determination of 210Pb and 210Po using a crown ether. J Environ Radioact 37:355–372CrossRefGoogle Scholar
  82. 82.
    International Atomic Energy Agency (2006) Report on the second ALMERA coordination meeting and the ALMERA soil sampling inter-comparison exercise-IAEA/SIE/01, IAEA/AL/164, p 36Google Scholar
  83. 83.
    Horwitz EP, Dietz ML, Rhoades S, Felinto C, Gale NH, Houghton J (1994) A lead-selective extraction chromatographic resin and its application to the isolation of lead from geological samples. Anal Chim Acta 292:263–273CrossRefGoogle Scholar
  84. 84.
    Horwitz P, McAlister D, Bond A, Barrans AB Jr (2005) Novel extraction chromatographic resins based on tetraalkyldiglycolamides: characterization and potential applications. Solv Extr Ion Exch 23:319–344CrossRefGoogle Scholar
  85. 85.
    Maxwell S, Culligan B, Hutchison J, Utsey R, McAlister D (2013) Rapid determination of 210Po in water samples. J Radioanal Nucl Chem 298:1977–1989CrossRefGoogle Scholar
  86. 86.
    Johansson LY (2008) Determination of Pb-210 and Po-210 in aqueous environmental samples, Ph.D. ThesisGoogle Scholar
  87. 87.
    Jia G, Belli M, Sansone U, Rosamilia S, Blasi M (2003) 210Pb and 210Po concentrations in the Venice lagoon ecosystem (Italy) and the potential radiological impact to the local public and environment. J Radioanal Nucl Chem 256:513–528CrossRefGoogle Scholar
  88. 88.
    Meli MA, Desideri D, Penna A, Ricci F, Penna N, Roselli C (2013) 210Po and 210Pb concentration in environmental samples of the Adriatic Sea. Int J Environ Res 7:51–60Google Scholar
  89. 89.
    Kavitha E, Chandrashekara MS, Paramesh L (2017) 226Ra and 210Po concentration in drinking water of Cauvery river basin south interior Karnataka State, India. J Rad Res Appl Sci 10:20–23Google Scholar
  90. 90.
    Kim G, Kim SuJ, Harada K, Schultz M, Burnett WC (2005) Enrichment of excess 210Po in anoxic ponds. Environ Sci Technol 2005(39):4894–4899CrossRefGoogle Scholar
  91. 91.
    Harada K, Burnett WC, LaRock PA (1989) Polonium in Florida groundwater and its possible relationship to the sulfur cycle and bacteria. Geochim Cosmochim Acta 53:143–150CrossRefGoogle Scholar
  92. 92.
    Skwarzec B (2009) Polonium, uranium and plutonium radionuclides in aquatic environment of Poland and Southern Baltic. Baltic Coastal Zone No. 13 part II, pp 127–166Google Scholar
  93. 93.
    Skwarzec B, Struminska D, Borylo A (2001) The radionuclides 234U, 238U and 210Po in drinking water in Gdansk agglomeration (Poland). J Radioanal Nucl Chem 250:315–318CrossRefGoogle Scholar
  94. 94.
    Skwarzec B, Struminska D, Borylo A (2003) Radionuclides of 210Po, 234U and 238U in drinking bottled mineral water in Poland. J Radioanal Nucl Chem 256:361–364CrossRefGoogle Scholar
  95. 95.
    Skwarzec B, Struminska D, Borylo A, Falandysz J (2004) Intake of 210Po, 234U and 238U radionuclides with beer in Poland. J Radioanal Nucl Chem 261:661–663CrossRefGoogle Scholar
  96. 96.
    Boryło A, Romańczyk G, Wieczorek J, Strumińska-Parulska D, Kaczor C (2019) Radioactivity of honey from northern Poland. J Radioanal Nucl Chem 319:289–296CrossRefGoogle Scholar
  97. 97.
    Ugur A, Yener G (2009) Determination of lead-210 and polonium-210 in marine environment. In: Aycik GA (ed) New techniques for the detection of nuclear and radioactive agents. NATO science for peace and security series B: physics and biophysics. Springer, DordrechtGoogle Scholar
  98. 98.
    Grabowski P, Bem H (2010) Determination of 210Po and uranium in high salinity water samples. J Radioanal Nucl Chem 286:455–460PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Carvalho FP, Oliveira JM (2009) Bioassay of 210Po in human urine and internal contamination of man. J Radioanal Nucl Chem 280:359–362CrossRefGoogle Scholar
  100. 100.
    Boryło A, Skwarzec B, Romanczyk G, Siebert J (2013) Polonium 210Po activities in human blood of patients with ischaemic heart disease from Gdansk in Poland. J Radioanal Nucl Chem 298:1685–1691PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kelecom A, Gouvea RCS, Santos PL (2002) Levels of 210Po and 210Pb in cigars. J Radioanal Nucl Chem 253:129–133CrossRefGoogle Scholar
  102. 102.
    Turtiainen T, Kostiainen E, Hallikainen A (2011) 210Pb and 210Po in Finnish cereals. J Environ Radioact 102:438–442PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Seslak B, Vukanac I, Kandic A, Ðurasevic M, Milic E, Jevremovic A, Benedik L (2017) Determination of 210Pb by direct gamma-ray spectrometry, beta counting via 210Bi and alpha-particle spectrometry via 210Po in coal, slag and ash samples from thermal power plant. J Radioanal Nucl Chem 311:719–726CrossRefGoogle Scholar
  104. 104.
    Strady E, Harmelin-Vivien M, Chiffoleau JF, Veron A, Tronczynski J, Olivier Radakovitch O (2015) 210Po and 210Pb trophic transfer within the phytoplankton- zooplankton-anchovy/sardine food web: a case study from the Gulf of Lion (NW Mediterranean Sea). J Enviorn Radioact 143:141–151CrossRefGoogle Scholar
  105. 105.
    Jia G, Belli M, Blasi M, Marchetti M, Rosamilia A, Sansone U (2000) 210Pb and 210Po determination in environmental samples. Appl Radiat Isot 53:115–120PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Guérin N, Dai X (2014) Determination of 210Po in drinking water and urine samples using copper sulfide micro-precipitation. Anal Chem 86:6026–6031PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Guérin N, Dai X (2015) An emergency bioassay method for 210Po in urine. Appl Radiat Isot 103:179–184PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    EiChrom Technologies LLC. Analytical procedures: lead-210 and polonium-210 in water with vacuum box. Method No: PBW01VBS.Revision 2.1. http://www.eichrom.com/docs/methods/pdf/otw01-20_pb-po-water.pdf
  109. 109.
    EiChrom Technologies LLC. Analytical procedures: lead-210 and polonium-210 in water Method No: PBW01 Revision 2.1. http://www.eichrom.com/docs/methods/pdf/otw01-20_pb-po-water.pdf
  110. 110.
    Miura T, Hayano K, Nakayama K (1999) Determination of 210Pb and 210Po in environmental samples by alpha ray spectrometry using an extraction chromatographic resin. Anal Sci 15:23–28CrossRefGoogle Scholar
  111. 111.
    Godoy JM, Lauria DC, Godoy DP, Cunha RP (1994) Development of a sequential method for the determination of 238U, 234U, 232Th, 230Th, 228Th, 228Ra, 226Ra, and 210Pb in environmental samples. J Radioanal Nucl Chem 182:165–169CrossRefGoogle Scholar
  112. 112.
    Oliveira J, Carvalho F (2006) Sequential extraction procedure for determination of uranium, thorium, radium, lead and polonium radionuclides by alpha spectrometry in environmental samples. Czech J Phys 56:D545–D555CrossRefGoogle Scholar
  113. 113.
    Saueia CHR, Mazzilli BP, Taddei MHT (2009) Sequential radioanalytical method for the determination of U and Th isotopes, 226Ra and 210Po using alpha spectrometry in samples of the Brazilian phosphate industry. J Radioanal Nucl Chem 281:201–204CrossRefGoogle Scholar
  114. 114.
    Ozden B, Taavi Vaasma T, Kiisk M, Tkaczyk AH (2017) A modified method for the sequential determination of 210Po and 210Pb in Ca-rich material using liquid scintillation counting. J Radioanal Nucl Chem 311:365–373CrossRefGoogle Scholar
  115. 115.
    Lemon BG, Khaing N, Ward A, Thakur P (2018) A rapid method for the sequential separation of polonium, plutonium, americium and uranium in drinking water. Appl Radia Isot 136:10–17CrossRefGoogle Scholar
  116. 116.
    Khaing N, Thakur P (2018) Rapid sequential separation method for 210Po and actinides in air filter sample. J Radioanal Nucl Chem 314:1–10Google Scholar
  117. 117.
    Dalencourt C, Chabane NM, Larivière D (2019) Sequential extraction of Th, U, Ra, Pb and Po for radioactivity assessment in mining residues (2019). In: 2nd international conference on radioanalytical and nuclear chemistry/RANC 2019 May 5–10, Budapest, HungaryGoogle Scholar
  118. 118.
    IAEA procedure for the sequential determination of radionuclides in phosphogypsum (2014) IAEA analytical quality in nuclear applications No. IAEA/AQ/34. International Atomic Energy Agency Vienna, 2014Google Scholar
  119. 119.
    Carvalho FP, Oliveira JM, Alberto G, Batlle JV (2010) Allometric relationships of Po and Pb in mussels and their applications to environmental monitoring. Mar Pollut Bull 60:1734–1742PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Carvalho FP, Oliveira JM, Malta M (2011) Radionuclides in deep-sea fish and other organisms from the North Atlantic Ocean. ICES J Mar Sci 68:333–340CrossRefGoogle Scholar
  121. 121.
    Smith JD, Hamilton TF (1984) Improved technique for recovery and measurement of polonium-210 from environmental materials. Anal Chim Acta 160:69–77CrossRefGoogle Scholar
  122. 122.
    Holm E, Eriksson M, Lind B, Levy I, Kinn G (2013) Source preparation of actinides and polonium using coins. J Radioanal Nucl Chem 296:1051–1054CrossRefGoogle Scholar
  123. 123.
    Karali T, Olmez S, Yener G (1996) Study of spontaneous deposition of 210Po on various metals and application for activity assessment in cigarette smoke. Appl Radiat Isot 47:409–411CrossRefGoogle Scholar
  124. 124.
    Porntepkasemsan B, Srisuksawad K, O-Manee A (2011) Deposition efficiency of polonium-210 on various metals. In: Proceeding of the TIChE 334 international conference, Hatyai, Thailand, Paper Code: ms006Google Scholar
  125. 125.
    Xarchoulakos DC, Kehagia K (2019) A study of various self-deposition solutions for 210Po analysis in tap water. J Radioanal Nucl Chem 296:1051–1054Google Scholar
  126. 126.
    Rieth U, Hummrich H, Kratz JV (2002) Electrodeposition of Po-210 on various electrode materials. GSI, Scientific Report 2002, p.183. www.gsi.de/annr ep2002
  127. 127.
    Guérin N, Dai X (2013) Rapid preparation of polonium counting sources for alpha spectrometry using copper sulfide micro-precipitation. Anal Chem 85:6524–6529PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Song L, Yan Ma Y, Wang Y, Yang Y, Luo M, Dai X (2017) Method of polonium source preparation using tellurium microprecipitation for alpha spectrometry. Anal Chem 89:13651–13657PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Véronneaua C, Aupiais J, Dacheux N (2000) Selective determination of polonium by photon electron rejecting alpha liquid scintillation (PERALS® System). Anal Chim Acta 415:229–238CrossRefGoogle Scholar
  130. 130.
    Landstetter C, Hiegesberger B, Katzlberger M, Sinojmeri C (2014) Determination of 210Pb and 210Po in water using the extractive scintillation cocktail Polex™. Appl Radiat Isot 93:76–81PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Case GN, McDowell WJ (1982) An improved sensitive assay for polonium-210 by use of a background-rejecting extractive liquid-scintillation method. Talanta 29:845–848PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Pentreath RJ, Allington DJ (2003) Dose to man from the consumption of marine seafoods: a comparison of the naturally–occurring 210Po with artificially-produced radionuclides. In: Proceedings of the international radiation protection assocication, 7, Sydney, vol 3. Pergamon, pp 1582–1585Google Scholar
  133. 133.
    Gauthier P-J, Le Gloarec M-F, Condomines M (2000) Degassing processes at Stromboli volcano inferred from short-lived disequilibria (210Pb–210Bi–210Po) in volcanic gases. Earth Planet Sci Lett 102:1–19Google Scholar
  134. 134.
    Burton WM, Stewart NG (1960) Use of long-lived natural radioactivity as an atmospheric tracer. Nature 186:584–589PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Desideri D, Meli MA, Feduzi L, Roselli C, Rongoni A, Saetta D (2007) U-238, U-234, Ra-226, Po-210 concentrations of bottled mineral waters in Italy and their dose contribution”. J Environ Radioact 94:86–97PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Vaaramaa K, Lehto J, Ervanne H (2003) Soluble and particle-bound 234,238U, 226Ra and 210Po in ground waters. Radiochim Acta 91:21–28CrossRefGoogle Scholar
  137. 137.
    Persson BRR, Holm E (2011) Polonium-210 and lead-210 in the terrestrial environment: a historical review. J Environ Radioact 102:420–429PubMedCrossRefGoogle Scholar
  138. 138.
    Cunha P, Bhat PS, Narayana Y (2011) A study on 210Po activity concentration in soil at different depths along coastal Kerala. J Radioanal Nucl Chem 290:171–174CrossRefGoogle Scholar
  139. 139.
    Belivermiş M, Kılıç Ö, Çayır A, Coşkun M, Coşkun M (2016) Assessment of 210Po and 210Pb in lichen, moss and soil around Çan coal-fred power plant, Turkey. J Radioanal Nucl Chem 307:523–531CrossRefGoogle Scholar
  140. 140.
    Fowler SW (2011) 210Po in the marine environment with emphasis on its behavior within the biosphere. J Environ Radioact 102:448–461PubMedCrossRefGoogle Scholar
  141. 141.
    Begy RC, Dumitru OA, Simon H, Steopoaie I (2015) An improved procedure for the determination of 210Po by alpha spectrometry in sediments samples from Danube Delta. J Radioanal Nucl Chem 303:2553–2557Google Scholar
  142. 142.
    Štrok M, Smodiš B (2011) Levels of 210Po and 210Pb in fish and molluscs in Slovenia and the related dose assessment to the population. Chemosphere 82:970–997PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Struminska-Parulska D, Skwarzec B, Tuszkowska A, Jahnz-Bielawska A, Boryło A (2010) Polonium (210Po), uranium (238U) and plutonium (239+240Pu) in the biggest Polish rivers. J Radioanal Nucl Chem 286:373–380CrossRefGoogle Scholar
  144. 144.
    Gwynn JP, Nalbandyan A, Rudolfsen G (2013) 210Po, 210Pb, 40K and 137Cs in edible wild berries and mushrooms and ingestion doses to man from high consumption rates of these wild foods. J Environ Radioact 114:34–41CrossRefGoogle Scholar
  145. 145.
    Uddin S, Bebhehani M (2014) Bioaccumulation of 210Po in common gastropod and bivalves species from the northern Gulf. Ecotoxicol Environ Saf 104:132–135PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Benedik L, Vreček P (2001) Determination of 210Pb and 210Po in environmental samples. Acta Chim Slov 48:199–213Google Scholar
  147. 147.
    Mársico ET, Ferreira MS, São Clemente SC, Gouvea RCS, Jesus EFO, Contid CC, Conte Junior CA, Kelecom AGAC (2014) Distribution of Po-210 in two species of predatory marine fish from the Brazilian coast. J Environ Radioact 128:91–96PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Kovács T, Horváth M, Sas Z, Dung BD, Minh TK (2014) Determination of 210Po content of Vietnamese tobacco samples. Cent Eur J Chem 12:1127–1132CrossRefGoogle Scholar
  149. 149.
    Khater AEM (2004) Polonium-210 budget in cigarettes. J Environ Radioact 71:33–41PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Persson BRR, Holm E (2014) 7Be, 210Pb, and 210Po in the surface air from the Arctic to Antarctica. J Environ Radioact 138:364–374PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Carlsbad Environmental Monitoring and Research CenterCarlsbadUSA
  2. 2.US Department of EnergyCarlsbadUSA

Personalised recommendations