Study of adsorption performance and adsorption mechanism for U(VI) ion on modified polyacrylonitrile fibers

  • Fan Wang
  • Xinglei Wang
  • Yunjie Jiang
  • Zhiwei Niu
  • Wangsuo Wu
  • Hongxia ZhangEmail author


The modified polyacrylonitrile fibers (ACPAN fibers) was synthesized by oximation reaction and alkaline hydrolysis. ACPAN fibers was characterized by means of SEM, FTIR, XPS and elementary analysis. The effects of contact time, solid–liquid ratio, pH, ionic strength, initial concentration and temperature on U(VI) adsorption onto ACPAN fibers was studied and the adsorption mechanism was also discussed. The experimental data fitted well pseudo-second-order kinetics model and Freundlich and D–R models, and thermodynamic process was an endothermic and spontaneous reaction. The maximum adsorption capacity was 163 mg/g, and U(VI) and ACPAN fibers possible formed more stable penta-coordination complexation. This paper highlighted ACPAN fibers as a good adsorbent to remove efficiently and economically uranyl from radioactive wastewater.


ACPAN fibers Adsorption Uranium 



The authors thank to the financial support of the National Natural Science Foundation of China (Nos. 21641003 and 21976074).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10967_2019_6928_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1529 kb)


  1. 1.
    Kharecha PA, Hansen JE (2013) Prevented mortality and greenhouse gas emissions from historical and projected nuclear power. Environ Sci Technol 47:4889–4895PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Camacho LM, Deng SG, Parra RR (2010) Uranium removal from groundwater by natural clinoptilolite zeolite: effects of ph and initial feed concentration. J Hazard Mater 175:393–398PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Barber PS, Kelley SP, Rogers RD (2012) Highly selective extraction of the uranyl ion with hydrophobic amidoxime functionalized ionic liquids via η2 coordination. RSC Adv 2:8526–8530CrossRefGoogle Scholar
  4. 4.
    Pan DQ, Fan QH, Ding KF, Li P, Lu Y, Yu T, Xu J, Wu WS (2011) The sorption mechanisms of Th(IV) on attapulgite. Sci China Chem 54(7):1138–1147CrossRefGoogle Scholar
  5. 5.
    Zeinab FA, Shymaa ME, Ayman MA (2016) In-situ synthesis of magnetite acrylamide amino- amidoxime nanocomposite adsorbent for highly efficient sorption of U(VI) ions. J Ind Eng Chem 34:105–116CrossRefGoogle Scholar
  6. 6.
    Yu SJ, Wang XX, Yang ST, Sheng GD, Alsaedi A, Hayat T, Wang XK (2017) Interaction of radionuclides with natural and manmade materials using XAFS technique. Sci China Chem 60(2):170–187CrossRefGoogle Scholar
  7. 7.
    Kim J, Tsouris C, Mayes RT, Tsouris C, Mayes RT, Oyola Y, Saito T, Janke CJ, Dai S, Schneider E, Sachde D (2013) Recovery of uranium from seawater: are view of current status and future research needs. Sep Sci Technol 48:367–387CrossRefGoogle Scholar
  8. 8.
    Rao L (2011) Recent international R&D activities in the extraction of uranium from seawater. Lawrence Berkeley National Laboratory, BerkeleyGoogle Scholar
  9. 9.
    Seko N, Tamada M, Yoshii F (2005) Current status of adsorbent for metal ions with radiation grafting and crosslinking techniques. Nucl Instrum Methods Phys Res Sect B 236:21–29CrossRefGoogle Scholar
  10. 10.
    Zhao HH, Liu XY, Yu M, Wang ZQ, Zhang BW, Ma HJ, Wang M, Li JY (2015) A study on the degree of amidoximation of polyacrylonitrile fibers and its effect on their capacity to adsorb uranyl ions. Ind Eng Chem Res 54(12):3101–3106CrossRefGoogle Scholar
  11. 11.
    Zhang XF, Yang SY, Yu B, Tan QL, Zhang XY, Cong HL (2018) Advanced modified polyacrylonitrile membrane with enhanced adsorption property for heavy metal ions. Sci Rep 8:1260PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Choi YH, Choi CM, Choi DH, Paik YK, Park BJ, Joo YK, Kim NJ (2011) Time dependent solid-state 13C NMR study on alkaline hydrolysis of polyacrylonitrile hollow fiber ultrafiltration membranes. J Membr Sci 371(1–2):84–89CrossRefGoogle Scholar
  13. 13.
    Chen ZJ, Huang NH, Liu H (2013) The hydrophilic properties of polyacrylonitrile fiber modified with acrylamide. J Wuhan Text Univ 26(6):32–36Google Scholar
  14. 14.
    Xiong J, Hu S, Liu Y, Yu J, Yu HZ, Xie L, Wen J, Wang XL (2017) Polypropylene modified with amidoxime/carboxyl groups in separating uranium(VI) from thorium(IV) in aqueous solutions. ACS Sustain Chem Eng 5(2):1924–1930CrossRefGoogle Scholar
  15. 15.
    Liu XY, Liu HZ, Ma HJ, Cao CQ, Yu M, Wang ZQ, Deng B, Wang M, Li JY (2012) Adsorption of the uranyl ions on an amidoxime-based polyethylene nonwoven fabric prepared by preirradiation-induced emulsion graft polymerization. Ind Eng Chem Res 51:15089–15095CrossRefGoogle Scholar
  16. 16.
    Gupta ML, Gupta B, Oppermann W, Hardtmann G (2004) Surface modification of poly- acrylonitrile polyacrylonitrile staple fibers via alkaline hydrolysis for superabsorbent applications. J Appl Polym Sci 91:3127–3133CrossRefGoogle Scholar
  17. 17.
    Jia Z, Yang YG (2007) Surface modification of polyacrylonitrile (PAN) fibers by grafting of natural polymer-soy protein. Polym Bull 59:13–23CrossRefGoogle Scholar
  18. 18.
    Choi SH, Nho YC (2000) Adsorption of UO2+2 by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group. Radiat Phys Chem 57:187–193CrossRefGoogle Scholar
  19. 19.
    Das S, Brown S, Mayes RT, Janke CJ, Tsouris C, Kuo LJ, Gill G, Dai S (2016) Novel poly(imide dioxime) sorbents: development and testing for enhanced extraction of uranium from natural seawater. Chem Eng J 298:125–135CrossRefGoogle Scholar
  20. 20.
    Han ZB, Guo J, Li W (2013) Fe(bpy)32+supported on amidoximated PAN fiber as effective catalyst for the photo degradation of organic dye under visible light irradiation. Chem Eng J 228:36–44CrossRefGoogle Scholar
  21. 21.
    Zhao YG, Shen HY, Pan SD, Hu MQ, Xia QH (2010) Preparation and characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents for removal of chromium (VI) ions. J Mater Sci 45:5291–5301CrossRefGoogle Scholar
  22. 22.
    Özcan A, Öncü E, Özcan AS (2006) Kinetics, isotherm and thermodynamic studies of adsorption of acid blue 193 from aqueous solutions onto natural sepiolite. Colloids Surf A 277:90–97CrossRefGoogle Scholar
  23. 23.
    Kago T, Goto A, Kusakabe K, Morooka S (1992) Preparation and performance of amidoxime fiber adsorbents for recovery of uranium from seawater. Ind Eng Chem Res 31(1):204–209CrossRefGoogle Scholar
  24. 24.
    Wu FC, Tseng RL, Juang RS (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153(1):1–8Google Scholar
  25. 25.
    Egawa H, Kabay N, Jyo A, Hirono M, Shuto T (1994) Recovery of uranium from seawater. 15. Development of amidoxime resins with high sedimentation velocity for passively driver fluidized bed adsorbers. Ind Eng Chem Res 33:657–661CrossRefGoogle Scholar
  26. 26.
    Wang CZ, Lan JH, Wu QY, Luo Q, Zhao YL, Wang XK, Chai ZF, Shi WQ (2014) Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups. Inorg Chem 53:9466–9476PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Niu ZW, Fan QH, Wang WH, Xu JZ, Chen L, Wu WS (2009) Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite. Appl Radiat Isot 67:1582–1590PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Pekel N, Güven O (2003) Separation of uranyl ions with amidoximated poly(acrylonitrile/N-vinylimidazole) complexing sorbents. Colloids Surf A Physicochem Eng Asp 212:155–161CrossRefGoogle Scholar
  29. 29.
    Wang GH, Liu JS, Wang XG, Xie ZY, Deng NS (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ji LL, Chen W, Bi J, Zheng SR, Xu ZY, Zhu DQ, Alvarez PJ (2010) Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ Toxicol Chem 29:2713–2719PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Alberghina G, Bianchini R, Fichera M, Fisichella S (2000) Dimerization of Cibacron Blue F3GA and other dyes: influence of salts and temperature. Dyes Pigm 46:129–137CrossRefGoogle Scholar
  32. 32.
    Wu ZJ, Liu HN, Zhang HF (2010) Research progress on mechanisms about the effect of ionic strength on adsorption. Environ Chem 29(6):997–1003Google Scholar
  33. 33.
    Li WP, Han XY, Wang XY, Wang YQ, Wang WX, Hu H, Tan TS, Wu WS, Zhang HX (2015) Recovery of uranyl from aqueous solutions using amidoximated polyacrylonitrile/exfoliated Na-montmorillonite composite. Chem Eng J 279:735–746CrossRefGoogle Scholar
  34. 34.
    Zhao DL, Zhu HY, Wu CN, Feng SJ, Alsaedi A, Hayat T, Chen CL (2018) Facile synthesis of magnetic Fe3O4/graphene composites for enhanced U(VI) sorption. Appl Surf Sci 444:691–698CrossRefGoogle Scholar
  35. 35.
    Ma Y, Zhou Q, Zhou SC, Wang W, Jia JJ, Xie W, Li AM, Shuang CD (2014) A bifunctional adsorbent with high surface area and cation exchange property for synergistic removal of tetracycline and Cu2+. Chem Eng J 258:26–33CrossRefGoogle Scholar
  36. 36.
    Glasstone S, Laidler KJ, Eryring H (1941) The theory of rate processes. McGraw-Hill, New YorkGoogle Scholar
  37. 37.
    Bai J, Yin XJ, Zhu YF, Fan Fl WuXL, Tian W, Tan CM, Zhang X, Wang Y, Cao SW, Fan FY, Qin Z, Guo JS (2016) Selective uranium sorption from salt lake brines by amidoximated Saccharomyces cerevisiae. Chem Eng J 283:889–895CrossRefGoogle Scholar
  38. 38.
    Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134:16441–16446PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Deng S, Bai R, Chen JP (2003) Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers. J Colloid Interface Sci 260(2):265–272PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang A, Uchiyama G, Asakura T (2003) Dynamic-state adsorption and elution behaviour of uranium(VI) ions from seawater by a fibrous and porous adsorbent containing amidoxime chelating functional groups. Adsorpt Sci Technol 21:761–773CrossRefGoogle Scholar
  41. 41.
    Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113(4):860–864PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Yang L, Bi L, Lei ZW, Miao Y, Li BL, Liu TH, Wu WS (2018) Preparation of amidoxime functionalized-β-cyclodextrin-graft-(maleic anhydride-co-acrylonitrule) copolymer and evaluation of the adsorption and regeneration properties of Uranium. Polymers 10:236–254PubMedCentralCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouChina
  2. 2.Key Laboratory of Special Function Materials and Structure Design, Ministry of EducationLanzhou UniversityLanzhouChina
  3. 3.Engineering Research Center for Neutron Application Technology, Ministry of EducationLanzhou UniversityLanzhouChina

Personalised recommendations