Preliminary evaluation of SEM/EDS technique for the determination of colloid diffusion coefficient in granite matrix

  • Tsuey-Lin Tsai
  • Yu-Hung ShihEmail author
  • Liang-Cheng Chen
  • Shih-Chin Tsai
  • I-Hsien Lee
  • Chuan-Pin Lee
  • Te-Yen Su


Colloids present high sorption for many solutes and are considered potential contaminant carriers in geological environments. Experimental quantitative data are required for an adequate description of colloid-mediated transport within natural media. In this paper, the line scan function of SEM/EDS was firstly applied to study colloid diffusion by depth profile in crystalline rock and the apparent diffusion coefficient was estimated to be ~ 6E−18 m2/s for 20 nm gold colloids. This technique can be applied to the prediction of colloid-facilitated radionuclide transport through water-saturated fractured porous rock for safety assessment of geological disposal for high-level radioactive waste.


Apparent diffusion coefficient (DaColloids Granite SEM/EDS 



  1. 1.
    Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in ground water at the Nevada Test Site. Nature 397:56–59CrossRefGoogle Scholar
  2. 2.
    Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloid Surf A Physicochem Eng Asp 107:1–56CrossRefGoogle Scholar
  3. 3.
    Missana T, Alonso U, Albarran N, García-Gutiérrez M, Cormenzana JL (2011) Analysis of colloids erosion from the bentonite barrier of a high level radioactive waste repository and implications in safety assessment. Phys Chem Earth Parts A/B/C 36:17–18CrossRefGoogle Scholar
  4. 4.
    McCarthy JF, Degueldre C (1993) Sampling and characterization of groundwater colloids for studying their role in the subsurface transport of contaminants. Environ Part 2:247–315Google Scholar
  5. 5.
    Degueldre C, Pfeiffer HR, Alexander W, Wernli B, Bruetsch R (1993) Colloid properties in granitic groundwater systems. I: sampling and characterization. Appl Geochem 11:677–695CrossRefGoogle Scholar
  6. 6.
    Alonso U (2006) Role of inorganic colloids generated in a high-level deep geological repository in the migration of radionuclides: open questions. J Iber Geol 32:79–94Google Scholar
  7. 7.
    Grindrod P (1993) The impact of colloids on the migration and dispersal of radionuclides with in fractured rock. J Contam Hydrol 13:167–181CrossRefGoogle Scholar
  8. 8.
    James SC, Chrysikopoulos CV (1999) Transport of polydisperse colloid suspensions in a single fracture. Water Resour Res 35:707–718CrossRefGoogle Scholar
  9. 9.
    Kosakowski G (2004) Anomalous transport of colloids and solutes in a shear zone. J Contam Hydrol 72:23–46CrossRefGoogle Scholar
  10. 10.
    McCarthy JF, Zachara JM (1989) Subsurface transport of contaminants. Environ Sci Technol 23:496–502Google Scholar
  11. 11.
    Möri A, Alexander WR, Geckeis H, Hauser W, Schäfer T, Eikenberg J, Fierz T, Degueldre C, Missana T (2003) The colloid and radionuclide retardation experiment at the Grimsel Test Site: influence of bentonite colloids on radionuclide migration in fractured rock. Colloid Surf A Physicochem Eng Asp 217:33–47CrossRefGoogle Scholar
  12. 12.
    Smith PA, Degueldre C (1993) Colloid-facilitated transport of radionuclides through fractured media. J Contam Hydrol 13:143–166CrossRefGoogle Scholar
  13. 13.
    Oswald JG, Ibaraki M (2001) Migration of colloids in discretely fractured porous media: effect of colloidal matrix diffusion. J Contam Hydrol 52:213–244CrossRefGoogle Scholar
  14. 14.
    Hunter RJ (1986) Foundations of colloid science, vol 1. Clarendon Press, OxfordGoogle Scholar
  15. 15.
    Cumbie DH, McKay LD (1999) Influence of diameter on particle transport in a fractured shale saprolite. J Contam Hydrol 37:139–157CrossRefGoogle Scholar
  16. 16.
    Alonso U, Missana T, Patelli A, Rigato V (2007) Bentonite colloid diffusion through the host rock of a deep geological repository. Phys Chem Earth 32:469–476CrossRefGoogle Scholar
  17. 17.
    Alonso U, Missana T, Patelli A, Rigato V, Ravagnan J (2007) Colloid diffusion in crystalline rock; an experimental methodology to measure diffusion coefficients and evaluate colloid size dependence. Earth Planet Sci Lett 259:372–383CrossRefGoogle Scholar
  18. 18.
    Kelly CJ, McFarlane CR, Schneider DA, Jackson SE (2014) Dating micrometre-thin rims using a LA-ICP-MS depth profiling technique on zircon from an Archaean meta sediment: comparison with the SIMS depth profiling method. Geostand Geoanal Res 38:389–407CrossRefGoogle Scholar
  19. 19.
    Rasmussen C, Stockli DF, Ross CH, Pickersgill A, Gulick SP, Schmieder M, Christeson GL, Wittmann A, Kring DA, Morgan JV (2019) U–Pb memory behavior in Chicxulub’s peak ring—applying U-Pb depth profiling to shocked zircon. Chem Geol 525:356–367CrossRefGoogle Scholar
  20. 20.
    Kulkarni NS, Warmack RJB, Radhakrishnan B, Hunter JL, Sohn Y, Coffey KR, Murch GE, Belova IV (2014) Overview of SIMS-based experimental studies of tracer diffusion in solids and application to Mg self-diffusion. J Phase Equilib Diff 35:762–778CrossRefGoogle Scholar
  21. 21.
    García-Gutiérrez M, Cormenzana JL, Missana T, Mingarro M, Molinero J (2006) Overview of laboratory methods employed for obtaining diffusion coefficients in FEBEX compacted bentonite. J Iber Geol 32:37–55Google Scholar
  22. 22.
    Crank J (1975) The mathematics of diffusion. Clarendon Press, OxfordGoogle Scholar
  23. 23.
    Hayat MA (1989) Colloidal gold: principles, methods, and applications. Academic Press, LondonGoogle Scholar
  24. 24.
    Hsieh PS, Lin W (2012) The spent nuclear fuel final disposal program—characterization and evaluation of potential host rock—potential host rock characteristics investigation (Project 2010-2012)—rock and mineral characterization of boreholes at K-area. Industrial Technology Research Institute (ITRI), SNFD-GEL-90-288 (Chinese edition)Google Scholar
  25. 25.
    Alonso U, Missana T, García-Gutiérrez M, Patelli A, Siitari-Kauppi M, Rigato V (2009) Diffusion coefficient measurements in consolidated clay by RBS micro-scale profiling. Appl Clay Sci 43:477–484CrossRefGoogle Scholar
  26. 26.
    Tsai SC, Lee CP, Tsai TL, Yu YC (2017) Characterization of cesium diffusion behavior into granite matrix using Rutherford backscattering spectrometry. Nucl Instrum Methods Phys Res Sect B 409:305–308CrossRefGoogle Scholar
  27. 27.
    Bagalkot N, Kumar GS (2018) Colloid transport in a single fracture–matrix system: gravity effects, influence of colloid size and density. Water 10:1531–1547CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Scanning electron microscope (SEM) with OXFORD Inca EDS. Accessed 12 Oct 2019

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Tsuey-Lin Tsai
    • 1
  • Yu-Hung Shih
    • 1
    Email author
  • Liang-Cheng Chen
    • 1
  • Shih-Chin Tsai
    • 2
  • I-Hsien Lee
    • 3
  • Chuan-Pin Lee
    • 4
  • Te-Yen Su
    • 1
  1. 1.Chemistry DivisionInstitute of Nuclear Energy ResearchTaoyuan CityTaiwan
  2. 2.Nuclear Science and Technology Development CenterNational Tsing Hua UniversityHsinchuTaiwan
  3. 3.Center for Environmental StudiesNational Central UniversityTaoyuan CityTaiwan
  4. 4.Department of Earth SciencesNational Cheng Kung UniversityTainan CityTaiwan

Personalised recommendations