An automated synthesis method for 68Ga-labelled ubiquicidin 29–41

  • Jannie le RouxEmail author
  • Sietske Rubow
  • Thomas Ebenhan
  • Carl Wagener


Published methods for radiolabelling of 1,4,7-triazacyclononane-1,4,7-triacetic acid ubiquicidin (NOTA-UBI) 29–41 to date describe manual or kit-based procedures. The purpose of this study was to develop an automated synthesis method for the synthesis of [68Ga]Ga-NOTA-UBI. NOTA-UBI was successfully labelled with gallium-68 using three different automated procedures. The use of radical scavengers to improve radiochemical purity is also discussed. The automated procedures showed a high degree of robustness and repeatability. The validated automated synthesis protocols using a Scintomics GRP Module will contribute to provide GMP-compliant [68Ga]Ga-NOTA-UBI for clinical infection imaging.


Automated synthesis Ubiquicidin NOTA-UBI 68Ga NOTA-UBI Good manufacturing practice Radiolabelling 



J le Roux has received financial assistance from Africa- X-ray Industrial and Medical (AXIM) in the form of a study bursary. The author would like to thank Janneke Rubow for assistance with the preparation of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10967_2019_6910_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)


  1. 1.
    Gelband H (2015) The state of the World’s antibiotics 2015. Wound Heal S Afr 8(2):30–34Google Scholar
  2. 2.
    Goldsmith SJ, Vallabhajosula S (2009) Clinically proven radiopharmaceuticals for infection imaging: mechanisms and applications. Semin Nucl Med 39:2–10CrossRefGoogle Scholar
  3. 3.
    Love C, Palestro CJ (2004) Radionuclide imaging of infection. J Nucl Med Technol 32:47–57PubMedGoogle Scholar
  4. 4.
    Palestro CJ (1994) The current role of gallium imaging in infection. Semin Nucl Med 24:128–141CrossRefGoogle Scholar
  5. 5.
    Palestro CJ, Love C (2017) Role of nuclear medicine for diagnosing infection of recently implanted lower extremity arthroplasties. Semin Nucl Med 47:630–638CrossRefGoogle Scholar
  6. 6.
    Britton KE (2002) Imaging bacterial infection with 99mTc-ciprofloxacin (Infecton). J Clin Pathol 55:817–823CrossRefGoogle Scholar
  7. 7.
    Ueda CE, Ono CR (2018) Role of 18F-FDG PET/CT in Renal Cyst infection. Curr Radiol Rep 6:6CrossRefGoogle Scholar
  8. 8.
    Keidar Z, Gurman-Balbir A, Gaitini D, Israel O (2008) Fever of unknown origin: the role of 18F-FDG PET/CT. J Nucl Med 49:1980–1985CrossRefGoogle Scholar
  9. 9.
    Stumpe KD, Dazzi H, Schaffner A, von Schulthess GK (2000) Infection imaging using whole-body FDG-PET. Eur J Nucl Med 27:822–832CrossRefGoogle Scholar
  10. 10.
    Palestro CJ (2009) Radionuclide imaging of infection: in search of the grail. J Nucl Med 50:671–673CrossRefGoogle Scholar
  11. 11.
    Glaudemans AWJM, Slart RHJA, van Dijl JM, van Oosten M, van Dam GM (2015) Molecular imaging of infectious and inflammatory diseases: a terra incognita. J Nucl Med 56:659–661CrossRefGoogle Scholar
  12. 12.
    Akhtar MS, Qaisar A, Irfanullah J, Iqbal J, Khan B, Jehangir M, Nadeem MA, Imran MB (2005) Antimicrobial peptide 99mTc-Ubiquicidin 29–41 as human infection-imaging agent: clinical trial. J Nucl Med 46:567–573PubMedGoogle Scholar
  13. 13.
    Gemmel F, Dumarey N, Welling M (2009) Future diagnostic agents. Semin Nucl Med 39:11–26CrossRefGoogle Scholar
  14. 14.
    Das SS, Britton KE, Solanki KK, Wareham DW, Pauwels EKJ, Welling MM, Lupetti A, Paulusma-Annema A, Nibbering PH, Balter HS (2000) Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations (multiple letters). Eur J Nucl Med 27:1865–1868CrossRefGoogle Scholar
  15. 15.
    Nibbering PH, Welling MM, Paulusma-Annema A, Brouwer CPJM, Lupetti A, Pauwels EKJ (2004) 99mTc-Labeled UBI 29-41 peptide for monitoring the efficacy of antibacterial agents in mice infected with Staphylococcus aureus. J Nucl Med 45:321–326PubMedGoogle Scholar
  16. 16.
    Ebenhan T, Gheysens O, Kruger HG, Zeevaart JR, Sathekge MM (2014) Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. Biomed Res Int 2014:867381CrossRefGoogle Scholar
  17. 17.
    Tworowska I, Ranganathan D, Thamake S, Delpassand E, Mojtahedi A, Schultz MK, Zhernosekov K, Marx S (2016) Radiosynthesis of clinical doses of 68Ga-DOTATATE (GalioMedix™) and validation of organic-matrix-based 68Ge/68Ga generators. Nucl Med Biol 43:19–26CrossRefGoogle Scholar
  18. 18.
    Kilian K (2014) 68Ga-DOTA and analogs: current status and future perspectives. Rep Pract Oncol Radiother 19:S13–S21CrossRefGoogle Scholar
  19. 19.
    Burke BP, Clemente GS, Archibald SJ (2014) Recent advances in chelator design and labelling methodology for 68Ga radiopharmaceuticals. J Label Compd Radiopharm 57:239–243CrossRefGoogle Scholar
  20. 20.
    Ebenhan T, Chadwick N, Sathekge MM, Govender P, Govender T, Kruger HG, Marjanovic-Painter B, Zeevaart JR (2014) Peptide synthesis, characterization and 68Ga-radiolabeling of NOTA-conjugated ubiquicidin fragments for prospective infection imaging with PET/CT. Nucl Med Biol 41:390–400CrossRefGoogle Scholar
  21. 21.
    Ebenhan T, Zeevaart JR, Venter JD, Govender T, Kruger GH, Jarvis NV, Sathekge MM (2014) Preclinical evaluation of 68 Ga-Labeled 1,4,7-Triazacyclononane-1,4,7-triacetic acid-ubiquicidin as a radioligand for pet infection imaging. J Nucl Med 55:308–314CrossRefGoogle Scholar
  22. 22.
    Vilche M, Reyes AL, Vasilskis E, Oliver P, Balter H, Engler H (2016) 68Ga-NOTA-UBI-29-41 as a PET tracer for detection of bacterial infection. J Nucl Med 57:622–627CrossRefGoogle Scholar
  23. 23.
    Mukherjee A, Bhatt J, Shinto A, Korde A, Kumar M, Kamaleshwaran K, Joseph J, Sarma HD, Dash A (2018) 68Ga-NOTA-ubiquicidin fragment for PET imaging of infection: from bench to bedside. J Pharm Biomed Anal 159:245–251CrossRefGoogle Scholar
  24. 24.
    Bhusari P, Bhatt J, Sood A, Kaur R, Vatsa R, Rastogi A, Mukherjee A, Dash A, Mittal BR, Shukla J (2019) Evaluating the potential of kit-based 68Ga-ubiquicidin formulation in diagnosis of infection: a pilot study 68Ga. Nucl Med Commun 40:228–234CrossRefGoogle Scholar
  25. 25.
    Velikyan I (2014) Prospective of 68Ga-radiopharmaceutical development. Theranostics 4:47–80CrossRefGoogle Scholar
  26. 26.
    Martin R, Jüttler S, Müller M, Wester HJ (2014) Cationic eluate pretreatment for automated synthesis of [68 Ga]CPCR26.2. Nucl Med Biol 41:84–89CrossRefGoogle Scholar
  27. 27.
    Breeman WAP, De Jong M, De Blois E, Bernard BF, Konijnenberg M, Krenning EP (2005) Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging 32:478–485CrossRefGoogle Scholar
  28. 28.
    Vorster M, Mokaleng B, Sathekge M, Ebenehan T (2013) A modified technique for efficient radiolabelling of 68Ga-citrate from a SnO2-based 68Ge/68 Ga generator for better infection imaging. Hell J Nucl Med 16(3):193–198PubMedGoogle Scholar
  29. 29.
    European Pharmacopeia (2011) Gallium (68Ga) edotreotide injection. 23:310Google Scholar
  30. 30.
    Jimenez L, Rana N, Travers K, Tolomanoska V, Walker K (2010) Evaluation of the endosafe portable testing system™ for the rapid analysis of biopharmaceutical samples. PDA J Pharm Sci Technol 64(3):211–221PubMedGoogle Scholar
  31. 31.
    Velikyan I, Beyer GJ, Långström B (2004) Microwave-supported preparation of 68Ga bioconjugates with high specific radioactivity. Bioconjug Chem 15:554–560CrossRefGoogle Scholar
  32. 32.
    Velikyan I, Maecke H, Langstrom B (2008) Convenient preparation of Ga-based PET-radiopharmaceuticals at room temperature. Bioconjugate 19:569–573CrossRefGoogle Scholar
  33. 33.
    Velikyan I, Beyer GJ, Bergström-Pettermann E, Johansen P, Bergström M, Långström B (2008) The importance of high specific radioactivity in the performance of 68Ga-labeled peptide. Nucl Med Biol 35:529–536CrossRefGoogle Scholar
  34. 34.
    Eisenwiener KP, Prata MIM, Buschmann I, Zhang HW, Santos AC, Wenger S, Reubi JC, Mäcke HR (2002) NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem 13:530–541CrossRefGoogle Scholar
  35. 35.
    Bauwens M, Chekol R, Vanbilloen H, Bormans G, Verbruggen A (2010) Optimal buffer choice of the radiosynthesis of 68Ga-Dotatoc for clinical application. Nucl Med Commun 31:753–758CrossRefGoogle Scholar
  36. 36.
    Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RMM (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467–477CrossRefGoogle Scholar
  37. 37.
    Brooke D, Movahed N, Bothner B (2015) Universal buffers for use in biochemistry and biophysical experiments. AIMS Biophys 2:336–342CrossRefGoogle Scholar
  38. 38.
    Mueller D, Breeman WA, Klette I, Gottschaldt M, Odparlik A, Baehre M, Tworowska I, Schultz MK (2016) Radiolabeling of DOTA-like conjugated peptides with generator-produced 68 Ga and using NaCl-based cationic elution method. Nat Protoc 11:1057–1066CrossRefGoogle Scholar
  39. 39.
    Velikyan I (2015) 68Ga-based radiopharmaceuticals: production and application relationship. Molecules. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gipharma (2016) NETSPOT Package insert 1–13Google Scholar
  41. 41.
    Rubow SM, Le Roux JS (2018) Evaluation of factors influencing the Ga-68 yield and Ge-68 breakthrough of a SnO2 based Gallium-68 generator. EJNMMI Radiopharm Chem 3:1–38CrossRefGoogle Scholar
  42. 42.
    Decristoforo C, Knopp R, Von Guggenberg E, Rupprich M, Dreger T, Hess A, Virgolini I, Haubner R (2007) A fully automated synthesis for the preparation of 68Ga-labelled peptides. Nucl Med Commun 28:7–12CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Division of Nuclear Medicine, Tygerberg HospitalStellenbosch UniversityTygerbergSouth Africa
  2. 2.Department of Nuclear MedicineUniversity of PretoriaPretoriaSouth Africa
  3. 3.RadiochemistrySouth African Nuclear Energy CorporationBritsSouth Africa

Personalised recommendations