Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 3, pp 2079–2089 | Cite as

Synthesis of magnetic-carbon sorbent for removal of U(VI) from aqueous solution

  • Zhongjun Lai
  • Zhi-qiang Xuan
  • Shun-fei Yu
  • Zhi-bin ZhangEmail author
  • Yi-yao Cao
  • Yao-xian Zhao
  • Yi-hua Li
  • Jin Luo
  • Xin-xing Li


An functional magnetic and carbon-based adsorbent, noted as Fe3O4@HTC-NaOH, was synthesized by hydrothermal and NaOH treatment processing. The results of FT-IR spectrum and ξ-potential showed the surface of Fe3O4@HTC-NaOH existed losts of f-lactonic and sodium carboxylic acid (COONa) groups and was relatively negative. The U(VI) adsorption capacities onto the Fe3O4@HTC-NaOH reached the maximum of 761.20 mg/g, showing a high efficiency for removal U(VI) from polluted water. In addition, the adsorption products can be readily separated from contaminated solutions using a magnet. The results indicated that Fe3O4@HTC-NaOH possessed potential application in the remediation of uranium polluted water and soil.


Uranium Carbon Magnetic sorbents Remediation 



This work was financially supported by the National Natural Science Foundation of China (21561002, 21866004) and the Science & Technology Support Program of Jiangxi Province (Grant No. 2018ACB21007).


  1. 1.
    Abdeen Z, Akl ZF (2015) Uranium(VI) adsorption from aqueous solutions using poly(Vinyl Alcohol)/carbon nanotube composites. RSC Adv 5:74220–74229Google Scholar
  2. 2.
    Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117(23):13935–14013PubMedGoogle Scholar
  3. 3.
    Asselin S, Ingram JC (2014) Uranium leaching from contaminated soil utilizing rhamnolipid, edta, and citric acid. Appl Environ Soil Sci 2014:1–6Google Scholar
  4. 4.
    Banning A, Benfer M (2017) Drinking water uranium and potential health effects in the German Federal State of Bavaria. Int J Environ Res Public Health 14(8):927PubMedCentralGoogle Scholar
  5. 5.
    Barrett CA, Chouyyok W, Speakman RJ, Olsen KB, Addleman RS (2017) Rapid extraction and assay of uranium from environmental surface samples. Talanta 173:69–78PubMedGoogle Scholar
  6. 6.
    Bem H, Bou-Rabee F (2004) Environmental and health consequences of depleted uranium use in the 1991 Gulf War. Environ Int 30:123–134PubMedGoogle Scholar
  7. 7.
    Bersimbaev RI, Bulgakova O (2015) The health effects of radon and uranium on the population of Kazakhstan. Genes Environ 37(1):18PubMedPubMedCentralGoogle Scholar
  8. 8.
    Caccin Matteo, Giacobbo Francesca, Da Ros Mirko, Besozzi Luigi, Mariani Mario (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297:9–18Google Scholar
  9. 9.
    Cantaluppi C, Degetto S (2000) Civilian and military uses of depleted uranium: environmental and health problems. Ann Chim 90:665–676PubMedGoogle Scholar
  10. 10.
    Shim JW, Park SJ, Ryu SK (2001) Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon 39(11):1635–1642Google Scholar
  11. 11.
    Lu BQ, Li M, Zhang XW, Huang CM, Wu XY, Fang Q (2018) Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach. J Hazard Mater 343:255–265PubMedGoogle Scholar
  12. 12.
    Mahmoud ME, Osman MM, Hafez OF, Elmelegy E (2010) Removal and Preconcentration of lead (II), copper (II), chromium (III) and iron (III) from Wastewaters by surface developed alumina adsorbents with immobilized 1-nitroso-2-naphthol. J Hazard Mater 173:349–357PubMedGoogle Scholar
  13. 13.
    Saleh Tawfik A, Naeemullah Mustafa Tuzen, Sarı Ahmet (2017) Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem Eng Res Des 117:218–227Google Scholar
  14. 14.
    Shao Dadong, Wang Xiangxue, Li Jiaxing, Huang Yongshun, Ren Xuemei, Hou Guangshun, Wang Xiangke (2015) Reductive immobilization of uranium by Paam–Fes/Fe3o4 Magnetic composites. Environ Sci Water Res Technol 1:169–176Google Scholar
  15. 15.
    Singhal P, Jha SK, Pandey SP, Neogy S (2017) Rapid extraction of uranium from sea water using Fe3o4 and humic acid coated Fe3o4 nanoparticles. J Hazard Mater 335:152–161PubMedGoogle Scholar
  16. 16.
    Kim J, Tsouris C, Mayes RT, Oyola Y, Saito T, Janke CJ, Dai S, Schneider E, Sachde D (2013) Recovery of uranium from seawater: a review of current status and future research needs. Sep Sci Technol 48:367–387Google Scholar
  17. 17.
    Nekhunguni PM, Tavengwa NT, Tutu H (2017) Sorption of uranium(VI) onto hydrous ferric oxide-modified zeolite: assessment of the effect of Ph, contact time, temperature, selected cations and anions on sorbent interactions. J Environ Manage 204:571–582PubMedGoogle Scholar
  18. 18.
    Rezaei A, Khani H, Masterifarahani M, Rofouei MK (2012) A novel extraction and preconcentration of ultra-trace levels of uranium ions in natural water samples using functionalized magnetic-nanoparticles prior to their determination by inductively coupled plasma-optical emission spectrometry. Anal Methods 4(12):4107–4114Google Scholar
  19. 19.
    Lai Z, Zhang Z, Cao X, Dai Y, Hua R, Le Z, Luo M, Liu Y (2016) Synthesis of novel functional hydrothermal carbon spheres for removal of uranium from aqueous solution. J Radioanal Nucl Chem 310:1335–1344Google Scholar
  20. 20.
    Han X, Wang Y, Cao X, Dai Y, Liu Y (2019) Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution. Appl Surf Sci 484:1035–1040Google Scholar
  21. 21.
    Zhang Z, Dong Z, Wang X, Ying D (2018) Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217Google Scholar
  22. 22.
    Zhang Z, Liu J, Cao X, Luo X (2015) Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO3/Ca–U(VI)–CO3 complexes. J Hazard Mater 300:633–642PubMedGoogle Scholar
  23. 23.
    Ivanets AI, Shashkova IL, Kitikova NV, Drozdova NV, Saprunova NA, Radkecich AV, Ku’bitskaya LV (2014) Sorption of strontium ions from solutions onto calcium and magnesium phosphates. Radiochemistry 56(1):32–37Google Scholar
  24. 24.
    Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Krivoshapkin PV, Krivoshapkina EF, Sillanpää M (2018) Sorption behavior of 85Sr onto manganese oxides with tunnel structure. J Radioanal Nucl Chem 316:673–683Google Scholar
  25. 25.
    Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Zarubo AM (2016) Mesoporous manganese oxides prepared by sol-gel method: synthesis, characterization and sorption properties towards strontium ions. Environ Nanotechnol Monit Manag 6(Complete):S2215153216300897Google Scholar
  26. 26.
    Ivanets AI, Milutin VV, Prozorovich VG, Kouznetsova TF, Netrasova NA (2019) Adsorption properties of manganese oxides prepared in aqueous-ethanol medium toward Sr(II) ions. J Radioanal Nucl Chem 321:243–253Google Scholar
  27. 27.
    Kitikova NV, Ivanets AI, Shashkova IL, Radkevich AV, Shemet LV, Kulbitskaya LV, Sillanpää M et al (2017) Batch study of 85 Sr adsorption from synthetic seawater solutions using phosphate sorbents. J Radioanal Nucl Chem 8:1–11Google Scholar
  28. 28.
    Heinen AW, Peters JA, Bekkum HV (2000) Competitive adsorption of water and toluene on modified activated carbon supports. Appl Catal A Gen 194(99):193–202Google Scholar
  29. 29.
    Hritcu D, Humelnicu D, Dodi G, Popa MI (2012) Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydr Polym 87:1185–1191Google Scholar
  30. 30.
    Tan L, Liu Q, Jing X, Liu J, Song D, Songxia H, Liu L, Wang J (2015) Removal of uranium(VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites. Chem Eng J 273:307–315Google Scholar
  31. 31.
    Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M (2013) Preparation of Fe3o4@C@Layered double hydroxide composite for magnetic separation of uranium. Ind Eng Chem Res 52:10152–10159Google Scholar
  32. 32.
    Li ZJ, Huang ZW, Guo WL, Wang L, Zheng LR, Chai ZF, Shi WQ (2017) Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic Tio2/Fe3o4 and its graphene composite. Environ Sci Technol 51:5666–5674PubMedGoogle Scholar
  33. 33.
    Zhang Z, Dong Z, Wang X, Dai Y, Cao X, Wang Y (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies. Chem Eng J 370:1376–1387Google Scholar
  34. 34.
    Yang X, Li J, Liu J (2013) Simple small molecule carbon source strategy for synthesis of functional hydrothermal carbon: preparation of highly efficient uranium selective solid phase extractant. J Mater Chem A 2:1550–1559Google Scholar
  35. 35.
    Zhang X, Wang J, Li R, Dai Q, Liu L (2013) Removal of uranium(VI) from aqueous solutions by surface modified magnetic Fe3o4 particles. New J Chem 37:3914–3919Google Scholar
  36. 36.
    Das D, Sureshkumar MK, Koley S (2010) Sorption of uranium on magnetite nanoparticles. J Radioanal Nucl Chem 285(3):447–454Google Scholar
  37. 37.
    Gao Y, Yuan Y, Ma D, Li L, Li Y, Wenhui X, Tao Wei (2014) Removal of aqueous uranyl ions by magnetic functionalized carboxymethylcellulose and adsorption property investigation. J Nucl Mater 453:82–90Google Scholar
  38. 38.
    Lin J, Sun W, Desmarais J, Chen N, Feng R, Zhang P, Li D, Lieu A, Tse JS, Pan Y (2018) Uptake and speciation of uranium in synthetic gypsum (Caso4*2h2o): applications to radioactive mine tailings. J Environ Radioact 181:8–17PubMedGoogle Scholar
  39. 39.
    Song Q, Ma L, Liu J, Bai C, Geng J, Wang H, Li B, Wang L, Li S (2012) Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J Colloid Interface Sci 386:291–299PubMedGoogle Scholar
  40. 40.
    Zhou L, Zou H, Jin J, Liu Z, Luo T (2016) Preparation of phosphonic acid-functionalized silica magnetic microspheres for uranium(VI) adsorption from aqueous solutions. J Radioanal Nucl Chem 310(3):1155–1163Google Scholar
  41. 41.
    Mahmoud ME, Khalifa MA, El Wakeel YM, Header MS, Abdel-Fattah MT (2017) Engineered nano-magnetic iron oxide-urea-activated carbon nanolayer sorbent for potential removal of uranium (VI) from aqueous solution. J Nucl Mater 487:13–22Google Scholar
  42. 42.
    Meng F, Yuan G, Larson SL, Ballard JH, Waggoner CA, Arslan Z, Han FX (2017) Removing uranium (VI) from aqueous solution with insoluble humic acid derived from leonardite. J Environ Radioact 180:1–8PubMedGoogle Scholar
  43. 43.
    Jing C, Li YL, Landsberger S (2016) Review of soluble uranium removal by nanoscale zero valent iron. J Environ Radioact 164:65–72PubMedGoogle Scholar
  44. 44.
    Corlin L, Rock T, Cordova J, Woodin M, Durant JL, Gute DM, Ingram J, Brugge D (2016) Health effects and environmental justice concerns of exposure to uranium in drinking water. Curr Environ Health Rep 3:434–442PubMedGoogle Scholar
  45. 45.
    Elsayed AA (2008) Kinetics and thermodynamics of adsorption of trace amount of uranium on activated carbon. Radiochim Acta 96:481–486Google Scholar
  46. 46.
    Gopalan A, Philips MF, Jeong JH, Lee KP (2014) Synthesis of novel poly(amidoxime) grafted multiwall carbon nanotube gel and uranium adsorption. J Nanosci Nanotechnol 14(3):2451–2458PubMedGoogle Scholar
  47. 47.
    Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Wu XL, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3o4@Sio2 composite particles. J Environ Radioact 106:40–46PubMedGoogle Scholar
  48. 48.
    Chen L, Zhao D, Chen S, Wang X, Chen C (2016) One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. J Colloid Interface Sci 472:99–107PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Zhongjun Lai
    • 1
  • Zhi-qiang Xuan
    • 1
  • Shun-fei Yu
    • 1
  • Zhi-bin Zhang
    • 2
    Email author
  • Yi-yao Cao
    • 1
  • Yao-xian Zhao
    • 1
  • Yi-hua Li
    • 1
  • Jin Luo
    • 1
  • Xin-xing Li
    • 1
  1. 1.Department of Occupational Health and Radiation ProtectionZhejiang Provincial Center for Disease Control and PreventionHangzhouChina
  2. 2.State Key Laboratory Breeding Base of Nuclear Resources and EnvironmentEast China University of TechnologyNanchangChina

Personalised recommendations