Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 3, pp 1889–1895 | Cite as

Tritium separation from heavy water using a membrane containing deuterated manganese dioxide

  • Hideki KoyanakaEmail author
  • Satoshi Fukutani
  • Hideo Miyatake


This study reports the separation of tritium from tritiated heavy water at room temperature using a membrane containing deuterated manganese dioxide. A continuous decrease in the tritium concentration in tritiated heavy water was observed when using the membrane. Furthermore, the dissolution of manganese ions from the membrane into tritiated heavy water was remarkably decreased by adding an adequate amount of lithium chloride to the tritiated heavy water.


Separation Tritium Deuterium oxide Membrane Manganese dioxide 



We thank Y. Koyanaka for LiMn2O4 preparation. M. Tosaki, Y. Isozumi for assistances in experiments at Kyoto University. Supporting finance by FORWARD SCIENCE Laboratory Ltd, The Japan Society For The Advancement Of Inventions, and Oita Prefecture Institute Of Invention And Innovation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10967_2019_6905_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1537 kb)


  1. 1.
    Devidson RB, VonHatten P, Schaub M, Ulrich D (1988) Commissioning and first operating experience at darlington tritium removal facility. Fusion Technol 14:472–479Google Scholar
  2. 2.
    Shimizu M, Kitamoto A, Takashima Y (1983) New proposition on performance evaluation of hydrophobic Pt catalyst packed in trickle bed. J Nucl Sci Technol 20:36–47Google Scholar
  3. 3.
    Asakura Y, Uchida S (1984) Experimental evaluation of improved dual temperature hydrogen isotopicexchange reaction system. J Nucl Sci Technol 21:381–392Google Scholar
  4. 4.
    Isomura S, Suzuki K, Shibuya M (1988) Separation and recovery of tritium by hydrogen–water isotopic exchange reaction. Fusion Technol 14:518–523Google Scholar
  5. 5.
    Vasaru G (1993) Tritium isotope separation. CRC Press, FloridaGoogle Scholar
  6. 6.
    Villani S (1976) Isotope separation. American Nuclear Society, HinsdaleGoogle Scholar
  7. 7.
    Gould RF (1978) Separation of hydrogen isotopes. American Nuclear Society, HinsdaleGoogle Scholar
  8. 8.
    Koyanaka H, Miyatake H (2015) Extracting tritium from water using a protonic manganese oxide spinel. Sep Sci Technol 50:2142–2146Google Scholar
  9. 9.
    Koyanaka H, Fukutani S (2018) Tritium separation from parts-per-trillion-level water by a membrane with prototanted manganese dioxide. J Radioanal Nucl Chem 318:175–182Google Scholar
  10. 10.
    Ooi K, Miyai Y, Katoh S (1986) Recovery of lithium from seawater by manganese oxide adsorbent. Sep Sci Technol 21:755–766Google Scholar
  11. 11.
    Shen X, Clearfield A (1986) Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxide. J Solid State Chem 64:270–282Google Scholar
  12. 12.
    Ooi K, Miyai Y, Katoh S, Maeda H, Abe M (1989) Topotactic Li+ insertion to λ− MnO2 in the aqueous phase. Langmuir 5:150–157Google Scholar
  13. 13.
    Feng Q, Miyai Y, Kanoh H, Ooi K (1992) Lithium(1+) extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox-type and ion-exchange-type sites. Langmuir 8:1861–1867Google Scholar
  14. 14.
    Tsumura T, Shimizu A, Inagaki M (1996) Lithium extraction/insertion from LiMn2O4—effect of crystallinity. Solid State Ion 90:197–200Google Scholar
  15. 15.
    Sato K, Poojary DM, Clearfield A, Kohno M, Inoue Y (1997) The surface structure of the proton-exchanged lithium manganese oxide spinels and their lithium–ion sieve properties. J Solid State Chem 131:84–93Google Scholar
  16. 16.
    Koyanaka H, Matsubaya O, Koyanaka Y, Hatta N (2003) Quantitative correlation between Li absorption and H content in manganese oxide spinel λ-MnO2. J Electroanalytical Chemistry. 559:77–81Google Scholar
  17. 17.
    Hunter JC (1981) Preparation of a new crystal form of manganese dioxide: λ-MnO2. J Solid State Chem 39:142–147Google Scholar
  18. 18.
    David WIF, Thackeray MM, De Picciotto LA, Goodenough JB (1987) Structure refinement of the spinel-related phases Li2Mn2O4 and Li0.2Mn2O4. J Solid State Chem 67:316–323Google Scholar
  19. 19.
    Ammundsen B, Jones DJ, Roziere J, Burns GR (1995) Mechanism of proton insertion and characterization of the proton sites in lithium manganatespinels. Chem Mater 7:2151–2160Google Scholar
  20. 20.
    Ammundsen B, Jones DJ, Roziere J, Berg H, Tellgren R, Thomas JO (1998) Ion exchange in manganese dioxide spinel: proton, deuteron, and lithium sites determined from neutron powder diffraction data. Chem Mater 10:1680–1687Google Scholar
  21. 21.
    Baǧci S, Tütüncü HM, Duman S, Bulut E, Özacar M, Srivastava GP (2014) Physical properties of the cubic spinel LiMn2O4. J Phys Chem Solids 75:63–469Google Scholar
  22. 22.
    Thackeray MM, Johnson PJ, De Picciotto LA, Bruce PG, Goodenough JB (1984) Electrochemical extraction of lithium from LiMn2O4. Mater Res Bull 19:179–187Google Scholar
  23. 23.
    James GS (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Klug DD, Whalley E (1984) The uncoupled O–H stretch in ice VII. The infrared frequency and integrated intensity up to 189 kbar. J Chem Phys 81:1220–1228Google Scholar
  25. 25.
    Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H O hydrogen bond lengths in minerals. Monatsheftefür Chemie 130:1047–1059Google Scholar
  26. 26.
    Koyanaka H, Ueda Y, Takeuchi K, Kolesnikov AI (2013) Effect of crystal structure of manganese dioxide on response for electrolyte of a hydrogen sensor operative at room temperature. Sens Actuators, B 183:641–647Google Scholar
  27. 27.
    Fang CM, De Wijs GA (2006) Local structure and chemical bonding of protonated LixMn2O4 spinels from first principles. Chem Mater 18:1169–1173Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Forward Science Laboratory LTD.OitaJapan
  2. 2.Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityKumatoriJapan
  3. 3.Radioisotope Research CenterKyoto UniversitySakyo-kuJapan

Personalised recommendations