Green synthesis of citric acid-crosslinked β-cyclodextrin for highly efficient removal of uranium(VI) from aqueous solution

  • Wei Li
  • Huijun LiuEmail author
  • Liuxing Li
  • Kai Liu
  • Juan Liu
  • Ting Tang
  • Wenkang Jiang


In this paper, a green synthesized citric acid-crosslinked β-cyclodextrin polymer (CA-β-CD) was applied in removing uranium from aqueous solutions. Citric acid acts not only as cross-linker but also as functional groups for providing adsorption sites. The adsorption properties by varying experimental conditions were carried out by batch tests. The maximum adsorption capacity could reach 150 mg g−1. Adsorption process was fitted better with the pseudo-second-order and Freundlich model. Thermodynamic studies proved that adsorption process was spontaneous and endothermic. More significantly, the polymer showed high selectivity for uranium and excellent reusability, demonstrating that CA-β-CD can be utilized as a promising adsorbent for uranium.


β-cyclodextrin Citric acid Polymer Uranium Adsorption 



We are grateful to acknowledge the support of this work from Nature Science Foundation of China (No. 11375084), the Nature Science Foundation of Hunan (No. 2017JJ4046).


  1. 1.
    Zhu J, Liu Q, Liu J, Chen R, Zhang H, Zhang M, Liu P, Li R, Wang J (2018) Investigation of uranium (VI) adsorption by poly(dopamine) functionalized waste paper derived carbon. J Taiwan Inst Chem E 91:266–273CrossRefGoogle Scholar
  2. 2.
    He Y-R, Li S-C, Li X-L, Yang Y, Tang A-M, Du L, Tan Z-Y, Zhang D, Chen H-B (2018) Graphene (rGO) hydrogel: a promising material for facile removal of uranium from aqueous solution. Chem Eng J 338:333–340CrossRefGoogle Scholar
  3. 3.
    Kapnisti M, Noli F, Misaelides P, Vourlias G, Karfaridis D, Hatzidimitriou A (2018) Enhanced sorption capacities for lead and uranium using titanium phosphates; sorption, kinetics, equilibrium studies and mechanism implication. Chem Eng J 342:184–195CrossRefGoogle Scholar
  4. 4.
    Cheng W, Wan T, Wang X, Wu W, Hu B (2018) Plasma-grafted polyamine/hydrotalcite as high efficient adsorbents for retention of uranium (VI) from aqueous solutions. Chem Eng J 342:103–111CrossRefGoogle Scholar
  5. 5.
    Kong L, Zhang H, Shih K, Su M, Diao Z, Long J, Hou L, Song G, Chen D (2018) Synthesis of FC-supported Fe through a carbothermal process for immobilizing uranium. J Hazard Mater 357:168–174CrossRefGoogle Scholar
  6. 6.
    Asiabi H, Yamini Y, Shamsayei M (2018) Highly efficient capture and recovery of uranium by reusable layered double hydroxide intercalated with 2-mercaptoethanesulfonate. Chem Eng J 337:609–615CrossRefGoogle Scholar
  7. 7.
    Yang S, Hua M, Shen L, Han X, Xu M, Kuang L, Hua D (2018) Phosphonate and carboxylic acid co-functionalized MoS2 sheets for efficient sorption of uranium and europium: multiple groups for broad-spectrum adsorption. J Hazard Mater 354:191–197CrossRefGoogle Scholar
  8. 8.
    Shen H-M, Zhu G-Y, Yu W-B, Wu H-K, Ji H-B, Shi H-X, She Y-B, Zheng Y-F (2015) Fast adsorption of p -nitrophenol from aqueous solution using β -cyclodextrin grafted silica gel. Appl Surf Sci 356:1155–1167CrossRefGoogle Scholar
  9. 9.
    Li X, Zhou M, Jia J, Jia Q (2018) A water-insoluble viologen-based β -cyclodextrin polymer for selective adsorption toward anionic dyes. React Funct Polym 126:20–26CrossRefGoogle Scholar
  10. 10.
    Zhao D, Zhao L, Zhu C, Tian Z, Shen X (2009) Synthesis and properties of water-insoluble β-cyclodextrin polymer crosslinked by citric acid with PEG-400 as modifier. Carbohydr Polym 78:125–130CrossRefGoogle Scholar
  11. 11.
    Zhou Y, Hu Y, Huang W, Cheng G, Cui C, Lu J (2018) A novel amphoteric β-cyclodextrin-based adsorbent for simultaneous removal of cationic/anionic dyes and bisphenol A. Chem Eng J 341:47–57CrossRefGoogle Scholar
  12. 12.
    Kono H, Nakamura T, Hashimoto H, Shimizu Y (2015) Characterization, molecular dynamics, and encapsulation ability of beta-cyclodextrin polymers crosslinked by polyethylene glycol. Carbohydr Polym 128:11–23CrossRefGoogle Scholar
  13. 13.
    Liu N, Wu Y, Sha H (2018) Characterization of EDTA-cross-linked beta-cyclodextrin grafted onto Fe-Al hydroxides as an efficient adsorbent for methylene blue. J Colloid Interface Sci 516:98–109CrossRefGoogle Scholar
  14. 14.
    Huang H, Fan Y, Wang J, Gao H, Tao S (2013) Adsorption kinetics and thermodynamics of water-insoluble crosslinked β-cyclodextrin polymer for phenol in aqueous solution. Macromol Res 21:726–731CrossRefGoogle Scholar
  15. 15.
    Badruddoza AZ, Shawon ZB, Tay WJ, Hidajat K, Uddin MS (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91:322–332CrossRefGoogle Scholar
  16. 16.
    Junthip J, Promma W, Sonsupap S, Boonyanusith C (2019) Adsorption of paraquat from water by insoluble cyclodextrin polymer crosslinked with 1,2,3,4-butanetetracarboxylic acid. Iran Polym J 28:213–223CrossRefGoogle Scholar
  17. 17.
    Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog Polym Sci 38:344–368CrossRefGoogle Scholar
  18. 18.
    He J, Li Y, Wang C, Zhang K, Lin D, Kong L, Liu J (2017) Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Appl Surf Sci 426:29–39CrossRefGoogle Scholar
  19. 19.
    Li C, Klemes MJ, Dichtel WR, Helbling DE (2018) Tetrafluoroterephthalonitrile-crosslinked beta-cyclodextrin polymers for efficient extraction and recovery of organic micropollutants from water. J Chromatogr A 1541:52–56CrossRefGoogle Scholar
  20. 20.
    Tang P, Sun Q, Suo Z, Zhao L, Yang H, Xiong X, Pu H, Gan N, Li H (2018) Rapid and efficient removal of estrogenic pollutants from water by using beta- and gamma-cyclodextrin polymers. Chem Eng J 344:514–523CrossRefGoogle Scholar
  21. 21.
    Kono H, Nakamura T (2013) Polymerization of β-cyclodextrin with 1,2,3,4-butanetetracarboxylic dianhydride: synthesis, structural characterization, and bisphenol A adsorption capacity. React Funct Polym 73:1096–1102CrossRefGoogle Scholar
  22. 22.
    Feiping Z (2015) EDTA-cross-Linked β-cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes. Environ Sci Technol 17:10570–10580Google Scholar
  23. 23.
    Huang W, Hu Y, Li Y, Zhou Y, Niu D, Lei Z, Zhang Z (2018) Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: the roles of cavity and surface functional groups. J Taiwan Inst Chem E 82:189–197CrossRefGoogle Scholar
  24. 24.
    Bednarz S, Lukasiewicz M, Mazela W, Pajda M, Kasprzyk W (2011) Chemical structure of poly(β-cyclodextrin-co-citric acid). J Appl Polym Sci 119:3511–3520CrossRefGoogle Scholar
  25. 25.
    Junthip J (2019) Water-insoluble cyclodextrin polymer crosslinked with citric acid for paraquat removal from water. J Macromol Sci A 56:555–563CrossRefGoogle Scholar
  26. 26.
    Moulahcene L, Skiba M, Senhadji O, Milon N, Benamor M, Lahiani-Skiba M (2015) Inclusion and removal of pharmaceutical residues from aqueous solution using water-insoluble cyclodextrin polymers. Chem Eng Res Des 97:145–158CrossRefGoogle Scholar
  27. 27.
    Wen R, Li Y, Zhang M, Guo X, Li X, Li X, Han J, Hu S, Tan W, Ma L, Li S (2018) Graphene-synergized 2D covalent organic framework for adsorption: a mutual promotion strategy to achieve stabilization and functionalization simultaneously. J Hazard Mater 358:273–285CrossRefGoogle Scholar
  28. 28.
    Al-Harahsheh M, AlJarrah M, Mayyas M, Alrebaki M (2018) High-stability polyamine/amide-functionalized magnetic nanoparticles for enhanced extraction of uranium from aqueous solutions. J Taiwan Inst Chem E 86:148–157CrossRefGoogle Scholar
  29. 29.
    Qi C, Liu H, Deng S, Yang A, Li Z (2018) A modeling study by response surface methodology (RSM) on Th(IV) adsorption optimization using a sulfated β-cyclodextrin inclusion complex. Res Chem Intermed 44:2889–2911CrossRefGoogle Scholar
  30. 30.
    Zhang Z, Dong Z, Wang X, Ying D, Niu F, Cao X, Wang Y, Hua R, Liu Y, Wang X (2018) Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217CrossRefGoogle Scholar
  31. 31.
    Liu Z, Liu D, Cai Z, Wang Y, Zhou L (2018) Synthesis of new type dipropyl imide chelating resin and its potential for uranium(VI) adsorption. J Radioanal Nucl Chem 318:1219–1227CrossRefGoogle Scholar
  32. 32.
    Feng Y, Ma B, Guo X, Sun H, Zhang Y, Gong H (2018) Preparation of amino-modified hydroxyapatite and its uranium adsorption properties. J Radioanal Nucl Chem 319:437–446CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyangPeople’s Republic of China
  2. 2.Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyangPeople’s Republic of China

Personalised recommendations