Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 3, pp 2057–2064 | Cite as

Measurement of 67Zn(n,p)67Cu, 64Zn(n,2n)63Zn, 89Y(n,γ)90mY and 89Y(n,2n)88Y reaction cross sections at the neutron energy of 14.54 MeV with covariance analysis

  • Imran Pasha
  • Rudraswamy Basavanna
  • Santhi Sheela Yerranguntla
  • Saraswatula Venkata Suryanarayana
  • Haladhara NaikEmail author
  • Meghna Karkera
  • Radha Eswaran
  • Pandikumar Gurusamy
  • Sunitha Aladahalli Madegowda
  • Sachhidananda Hulihalli Basavalingappa


The 67Zn(n,p)67Cu, 64Zn(n,2n)63Zn, 89Y(n,γ)90mY and 89Y(n,2n)88Y reaction cross sections relative to the 197Au(n,2n)196Au monitor reaction have been determined at the neutron energy of 14.54 ± 0.002 MeV by using the method of activation and off-line γ-ray spectrometry. The neutron energy used was obtained from the 3H(d,n)4He reaction. The covariance analysis was performed by taking the uncertainties arising in various attributes and the correlations between those attributes. The analyzed results from the present measurement were compared with the literature data and evaluated data of various libraries like ENDF/B-VIII, JEFF-3.3, JENDL-4.0 and ROSFOND-2010 libraries as well as with the calculated values based on TALYS-1.9 code.


67Zn(n,p)67Cu 64Zn(n,2n)63Zn, 89Y(n,γ)90mY and 89Y(n,2n)88Y reactions 3H(d,n)4He reaction neutron γ-Ray spectrometry Covariance analysis TALYS-1.9 



One of the author (BR) would like to thank, Department of Atomic Energy and Board of Research in Nuclear Sciences (DAE-BRNS) through major research project (Sanction No. 36(6)/14/92/2014-BRNS/2727). The authors are grateful to staff of Purnima neutron generator for their excellent operation of accelerator.


  1. 1.
    Uwamino Y, Sugita H, Kondo Y, Nakamura T (1992) Measurement of neutron activation cross sections of energy up to 40 MeV using semi-monoenergetic p-Be neutrons. Nucl Sci Eng 111:391–403CrossRefGoogle Scholar
  2. 2.
    Bhike M, Saxena A, Roy BJ, Choudhury RK, Kailas S, Ganesan S (2009) Measurement of 67Zn(n,p)67Cu, 92Mo(n,p)92mNb and 98Mo(n,γ)99Mo reaction cross sections at incident neutron energies of En = 1.6 and 3.7 MeV. Nucl Sci Eng 162(2):175–182CrossRefGoogle Scholar
  3. 3.
    Bhatia C, Tornow W (2013) Measurement of 64Zn(n,2n)63Zn reaction cross section between 12.5 and 14.5 MeV. J Phys G: Nucl Part Phys 40:065104CrossRefGoogle Scholar
  4. 4.
    Zhou F, Xue X, Kong X, Yuan S, Huang H, Li Y (2010) Measurement of the 89Y(n, γ)90mY cross section in the neutron energy range of 13.5–14.6 MeV. Nucl Instrum Methods Phys Res B 268:1367–1369CrossRefGoogle Scholar
  5. 5.
    Luo J, Jiang Li (2016) Activation cross section for reactions induced by d-T neutrons on natural Yttrium. Nucl Sci Eng 184(2):254–262CrossRefGoogle Scholar
  6. 6.
    Kielan D, Marcinkowski A (1995) Cross sections for (n, p) reaction on Zinc isotopes in terms of the novel multistep compounds reaction model. Z Phys A 352:137–143CrossRefGoogle Scholar
  7. 7.
    Konno C, Ikeda Y, Oishi K, Kawade K, Yamamoto H, Maekawa H (1993) Activation cross section measurements at neutron energy from 13.3 to 14.9 MeV. Report No. JAERI-1329Google Scholar
  8. 8.
    Xiangzhong K, Yongchang Wang, Junqian Y, Jingkang Y, Yongging S (1992) The cross section measurements for 67Zn(n, p)67Cu and 66Zn(n,2n)65Zn reactions. J JLNZ 28:99Google Scholar
  9. 9.
    Viennot M, Ait Haddou A, Chiadli A, Paic G (1982) Excitation functions of (n,p) reactions in the region 13.75 to 15 MeV for Ti, Fe and Ni isotopes. In: Conference on nuclear data for Science and technology, Antwerp, 406Google Scholar
  10. 10.
    Filatenkov AA (2016) Neutron activation cross sections measured at KRI in neutron energy region 13.4–14.9 MeV. INDC (CCP)-0460 Rev, pp 1–290Google Scholar
  11. 11.
    Mannhart W, Schmidt D (2007) Measurement of neutron activation cross sections in the energy range from 8 to 15 MeV. Phys Tech Bundesanst, Neutronenphysik Report No. 53Google Scholar
  12. 12.
    Ghorai SK, Sylva PM, Williams JR, Alford WL (1995) Partial neutron cross sections for 64Zn, 66Zn, 67Zn and 68Zn between 14.2 and 18.2 MeV. Ann Nucl Energy 22:11–22CrossRefGoogle Scholar
  13. 13.
    Vennot M, Berrada M, Paic G, Joly S (1991) Cross section measurements of (n, p) and (n, np + pn + d) reactions for titanium, chromium, iron, cobalt, nickel and zinc isotopes around 14 MeV. Nucl Sci Eng 108(3):289–301CrossRefGoogle Scholar
  14. 14.
    Magnusson G, Andersson P, Bergqvist I (1980) 14.7 MeV neutron capture cross section measurements with activation technique. Phys Scr 21:21–26CrossRefGoogle Scholar
  15. 15.
    Schwerer O, Winkler-Rohatsch M, Warhanek H, WInkler G (1976) Measurement of cross sections for 14 MeV neutrons capture. Nucl Phys A 264:105–114CrossRefGoogle Scholar
  16. 16.
    Grench HA, Coop KL, Menlove HO, Vaughn FJ (1967) A study of the spin dependence of the nuclear level density by means of the 89Y(n, γ)90 g, 90mY reactions. Nucl Phys A 94:157–179CrossRefGoogle Scholar
  17. 17.
    Bramlitt ET, Fink RW (1963) Rare nuclear reactions induced by 14.7 MeV neutrons. Phys Rev 131(6):2649–2663CrossRefGoogle Scholar
  18. 18.
    Zhu C, Chen Y, Mou Y, Zheng P, He T, Wang X, An L, Guo H (2011) Measurement of (n,2n) reaction cross sections at 14 MeV for several nuclei. Nucl Sci Eng 169:188CrossRefGoogle Scholar
  19. 19.
    Zhou F, Zhang H et al (2008) Cross section measurements for (n,2n) and (n, α) reactions on Yttrium at neutron energies from 13.5 to 14.6 MeV. Appl Radiat Isot 66:1898–1900CrossRefGoogle Scholar
  20. 20.
    Klopries RM, Doczi R, Sudar S, Csikai J, Qaim SM (1997) Excitation functions of some neutron threshold reactions on 89Y in the energy range of 7.8 to 14.7 MeV. Radiochim Acta 79:3–7Google Scholar
  21. 21.
    Iwasaki S, Matsuyama S, Ohkubo T, Fukuda H, Sakuma M, Kitamura M (1994) Measurement of activation cross sections for several elements between 12 and 20 MeV. In: Conference on nuclear data for science and technology, Gatlinburg, vol 1, 305Google Scholar
  22. 22.
    Wagner M, Winkler G, Vonach H, Buczko Cs M, Csikai J (1989) Measurement of the cross sections for the reactions 52Cr(n,2n)51Cr, 66Zn(n,2n)65Zn, 89Y(n,2n)88Y and 96Zr(n,2n)95Zr from 13.5 to 14.8 MeV. Ann Nucl Energy 16:623–635CrossRefGoogle Scholar
  23. 23.
    Jianzhou H, Hanlin L, Jizhou L, Peiguo F (1980) Excitation curve measurement for the reaction 89Y(n,2n)88Y. Chin J Nucl Phys 3(2):213Google Scholar
  24. 24.
    Zhang Y, Zhao L, Kong X, Liu R, Jiang L (2012) Cross-sections for (n,2n) and (n, α) reactions on 55Mn isotopes around neutron energy 14 MeV. Radiat Phys Chem 81:1563–1567CrossRefGoogle Scholar
  25. 25.
    IAEA-EXFOR Database available at
  26. 26.
    Koning AJ, Hilaire S, Goriely S (2017) TALYS-1.9, A Nuclear Reaction Program (NRG-1755 ZG Petten, The Netherlands).
  27. 27.
    Sinha A, Roy T, Yogesh K, Ray N, Shukla M, Patel T, Bajpai S, Sarkar PS, Bishnoi S (2015) Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India. Nucl Instrum Methods Phys Res B 350:66–70CrossRefGoogle Scholar
  28. 28.
    Martin MJ (2013) Nuclear data sheets for A = 152*. Nucl Data Sheets 114:1497–1847CrossRefGoogle Scholar
  29. 29.
    NuDat 2.7 (2016) National Nuclear Data Center, Brookhaven National Laboratory.
  30. 30.
    Vidmar T (2005) EFFTRAN—a Monto Carlo efficiency transfer code for gamma-ray spectrometry. Nucl Instrum Methods Phys Res A 550:603–608CrossRefGoogle Scholar
  31. 31.
    Sheela SY, Naik H, Prasad KM, Ganesan S, Suryanarayana SV (2017) Detailed data sets related to covariance analysis of the measurement of cross section of 59Co(n,γ)60Co reaction relative to the cross section of 115In(n,γ)116m In: Internal Report No. Mu/Stastics/DAE-BRNS/2017.
  32. 32.
    Geraldo LP, Smith DL (1990) Covariance analysis and fitting of germanium gamma-ray detector efficiency calibration data. Nucl Instrum Methods Phys Res A 290:499–508CrossRefGoogle Scholar
  33. 33.
    Pasha I, Rudraswamy B, Radha E, Sathiamoorthy V (2018) Efficiency of high-purity germanium detector at characteristic gamma energies of 198Au and 58Co and covariance analysis. Radiat Prot Environ 41:110–114CrossRefGoogle Scholar
  34. 34.
    Geraldo LP, Smith DL (1989) least square methods and covariance matrix applied to the relative efficiency calibration of a Ge(Li) detector. Inst de Pesquisas Energeticas e Nuleares 243:1–16Google Scholar
  35. 35.
    Patel T, Sinha A (2013) Development of low energy deuteron accelerator based DC and pulsed neutron generators. BARC newsletter, 146Google Scholar
  36. 36.
    Agostinelli S et al (2003) GEANT4: a simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303CrossRefGoogle Scholar
  37. 37.
    Carlson AD, Poenitz WP, Hale GM, Peelle RW, Doddler DC, Fu CY, Mannhart W (1993) The ENDF/B-VI neutron cross sections measurement standards. NISTIR5177Google Scholar
  38. 38.
    Millsap DW, Landsberger S (2015) Self-attenuation as a function of gamma ray energy in naturally occurring radioactive material in the oil and gas industry. Appl Radiat Isot 97:21–433CrossRefGoogle Scholar
  39. 39.
    Nowotny R (1998) XMuDat photon attenuation data on PC. IAEA Report IAEA-NDS 195.
  40. 40.
    Capote R, Zolotarev KI, Pronyaev VG, Trkov A (2012) Updating and extending the IRDF-2002 dosimetry library.
  41. 41.
    Yerraguntla SS, Naik H, Karantha MP, Ganesan S, Suryanarayana SV, Badwar S (2017) Measurement of 59Co(n,γ)60Co reaction cross sections at the effective neutron energies of 11.98 and 15.75 MeV. J Radioanal Nucl Chem 314(1):457–465CrossRefGoogle Scholar
  42. 42.
    Pasha I, Basavanna R, Yerranguntla SS, Suryanarayana SS, Meghna K, Naik H, Prasad MK, Danu LS, Saroj B, Petel T, Rajeev K (2019) 93Nb(n,2n)92mNb, 93Nb(n, α)90mY and 92Mo(n, p)92mNb reactions at 14.78 MeV and covariance analysis. J Radioanal Nucl Chem 320:561–568CrossRefGoogle Scholar
  43. 43.
    Herman M, Trkov A, Capote GR, Nonre GPA, Brown DA, Arcilla R, Danon Y, Plompen A, Mughabghab SF, Jing Q, Zhigang G, Tingjin L, Hanlin L, Xichao R, Leal L, Carlson BV, Kawano T, Sin M, Simakov Stanislav P, Guber K (2018) Evaluation of neutron reactions on iron isotopes for CIELO and EDNF/B-VIII.0. Nucl Data Sheets 148:214–253CrossRefGoogle Scholar
  44. 44.
    Koning AJ, Bauge E, Dean CJ, Dupont E, Fisher U, Forrest RA, Jacqmin R, Leeb H, Kellet MA, Mills RW, Nordborg C, Pescarine M, Rungma Y, Rullhusen P (2011) Status of the JEFF nuclear data library. J Korean Phys Soc 59:1057–1062CrossRefGoogle Scholar
  45. 45.
    Shibata K, Iwamot O, Nakagawa T, Iwamot N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohasawa T, Murata T, Matsunobu H, Zukeran A, Kamada S (2011) JENDL-4.0: a new library for nuclear science and engineering. Nucl Sci Techol 48:1–30CrossRefGoogle Scholar
  46. 46.
    Zabrodskaya SV, Ignatyuk AV, Koscheev VN (2007) Nuclear constants. ROSFOND-2010, pp 1–2Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Imran Pasha
    • 1
  • Rudraswamy Basavanna
    • 1
  • Santhi Sheela Yerranguntla
    • 2
  • Saraswatula Venkata Suryanarayana
    • 3
  • Haladhara Naik
    • 4
    Email author
  • Meghna Karkera
    • 5
  • Radha Eswaran
    • 6
  • Pandikumar Gurusamy
    • 7
  • Sunitha Aladahalli Madegowda
    • 1
  • Sachhidananda Hulihalli Basavalingappa
    • 8
  1. 1.Department of PhysicsBangalore UniversityBengaluruIndia
  2. 2.Department of MACSNITKSurathkalIndia
  3. 3.Nuclear Physics DivisionBhabha Atomic Research CenterMumbaiIndia
  4. 4.Radio Chemistry DivisionBhabha Atomic Research CenterMumbaiIndia
  5. 5.Department of StatisticsManipal Academy of Higher EducationManipalIndia
  6. 6.RPD, ROMG, IGCARKalpakkamIndia
  7. 7.RSDD, CDG, RDG, IGCARKalpakkamIndia
  8. 8.Visvesvaraya Technological UniversityBelgaumIndia

Personalised recommendations