Seawater, biota and sediment partitioning of 137Cs in the east coast of Peninsular Malaysia

  • Zal U’yun Wan MahmoodEmail author
  • Mei-Wo Yii
  • Dainee Norfardzila Ahmad Tugi
  • Norfaizal Mohamed
  • Nooradilah Abdullah
  • Salahuddin Muhamad
  • Mohd Tarmizi Ishak
  • Mohamad Noh Sawon
  • Muhammad Izzat Muammar Ramli


Partitioning of 137Cs between marine compartments in the east coast of Peninsular Malaysia was studied with the objectives were to quantify the level of 137Cs in seawater, biota and sediment and to assess its partition coefficient of CF and Kd. The results found the level of 137Cs were low in all type of samples and seems to be not significant. Therefore, this can be concluded that the levels of 137Cs in those samples remain in the background level and there is no new input of 137Cs into this region. Moreover, the evidence discussed in this work is reasonable to highlight the possible reasons or factors affecting the partitioning of 137Cs in seawater, sediment and its accumulation in biota as well as its CF and Kd.


Activity concentration Biota 137Cs Partition coefficient Seawater Sediment 



This study is a part of the project “Levels, Trends and Effect of Natural and Anthropogenic Radionuclides in the Malaysian Marine Environment”, which funded by IAEA under the project “K41017—Effects of Natural and Anthropogenic Radionuclides in the Marine Environment and Their Use as Tracers for Oceanography Studies (Contract No. 22192). Inline to implement this project, the authors are thankful to all personnel and project members for the necessary help during the sampling and laboratory analysis. The authors are also thankful to IAEA for funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Valles I, Camacho A, Ortega X, Serrano I, Blázquez S, Pérez S (2009) Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain). J Environ Radioact 100:102–107CrossRefGoogle Scholar
  2. 2.
    Sanial V, Buesseler KO, Charette MA, Nagao S (2017) Unexpected source of Fukushima-derived radiocesium to the coastal ocean of Japan. Pro Nat Acad Sci USA 114(42):11092–11096CrossRefGoogle Scholar
  3. 3.
    Wernsperger B, Schlosser C (2004) Noble gas monitoring within the international monitoring system of the comprehensive nuclear test-ban treaty. Radiat Phys Chem 71:775–779CrossRefGoogle Scholar
  4. 4.
    Grabowski P, Długosz M, Szajerski P, Bem H (2010) A comparison of selected natural radionuclide concentrations in the thermal groundwater of Mszczonów and Cieplice with deep well water from Łódź City, Poland. Nukleonika 55:181–185Google Scholar
  5. 5.
    Manolopoulou M, Vagena E, Stoulos S, Ioannidou A, Papastefanou C (2011) Radioiodine and radiocesium in Thessaloniki, Northern Greece due to the Fukushima nuclear accident. J Environ Radioact 102:796–797CrossRefGoogle Scholar
  6. 6.
    Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Tech 48:1129–1134CrossRefGoogle Scholar
  7. 7.
    Yasunari TJ, Stohl A, Hayano RS, Burkhart JF, Eckhardt S, Yasunari T (2011) Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc Nat Acad Sci USA 108:19530–19534CrossRefGoogle Scholar
  8. 8.
    Marović G, Bituh T, Franić Z, Gospodarić I, Kovač J, Lokobauer N, Maračić M, Petrinec B, Senčar J (2010) Results of environmental radioactivity measurements in the Republic of Croatia. Annual reports 1998–2009 (in Croatian), Institute for Medical Research and Occupational HealthGoogle Scholar
  9. 9.
    Otosaka S, Kato Y (2014) Radiocesium derived from the Fukushima Daiichi Nuclear Power Plant accident in seabed sediments: initial deposition and inventories. Environ Sci Process 16:978–990CrossRefGoogle Scholar
  10. 10.
    Misumi K, Tsumune D, Tsubono T, Tateda Y, Aoyama M, Kobayashi T, Hirose K (2014) Factors controlling the spatiotemporal variation of 137Cs in seabed sediment of the Fukushimacoast: implications from numerical simulations. J Environ Radioact 136:218–228CrossRefGoogle Scholar
  11. 11.
    Tsuruta T, Harada H, Misonou T, Matsuoka T, Hodotsuka Y (2017) Horizontal and vertical distributions of 137Cs in seabed sediments around the river mouth near Fukushima Daiichi Nuclear Power Plant. J Oceanogr 73:547–558CrossRefGoogle Scholar
  12. 12.
    Porcelli D, Andersson PS, Baskaran M, Wasserburg GJ (2001) Transport of U- and Th-series nuclides in a Baltic shield watershed and the Baltic Sea. Geochim Cosmochim Acta 65:2439–2459CrossRefGoogle Scholar
  13. 13.
    Takemura T, Nakamura H, Takigawa M, Kondo H, Satomura T, Miyasaka T, Nakajima T (2011) A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi nuclear power plant. Meteorological Society of Japan, TokyoCrossRefGoogle Scholar
  14. 14.
    Ashraf MA, Akib S, Maah MJ, Yusoff I, Balkhair KS (2014) Cesium-137: radio-chemistry, fate, and transport, remediation, and future concerns. Crit Rev Environ Sci Technol 44:1740–1793CrossRefGoogle Scholar
  15. 15.
    Fan QH, Xu JZ, Niu ZW, Li P, Wu WS (2012) Investigation of Cs(I) uptake on Beishan soil combined batch and eds techniques. Appl Radiat Isot 70:13–19CrossRefGoogle Scholar
  16. 16.
    Honda MC, Aono T, Aoyama M, Hamajima Y, Kawakami H, Kitamura M, Masumoto Y, Miyazawa Y, Takigawa M, Saino T (2012) Dispersion of artificial caesium-134 and -137 in the Western North Pacific one month after the Fukushima accident. Geochem J 46:e1–e9CrossRefGoogle Scholar
  17. 17.
    Yii MW, Zaharudin A, Abdul-Kadir I (2009) Distribution of naturally occurring radionuclides activity concentration in East Malaysian marine sediment. Appl Radiat Isot 67:630–635CrossRefGoogle Scholar
  18. 18.
    Gilmore G, Hemingway J (1998) Practical gamma-ray spectrometry, 1st edn. Wiley, West Sussex, p 314pGoogle Scholar
  19. 19.
    IAEA (1989) Measurement of radionuclides in food and the environment. Technical report series no. 295, International Atomic Energy Agency, Vienna, pp 61–63Google Scholar
  20. 20.
    Zaharudin A, Yii MW, Abdul-Kadir I (2007) Method of software validation for 137Cs and 226Ra activity measurements in environmental samples using gamma spectrometry system. In: Validation procedures of software applied in nuclear instruments, IAEA-TECDOC-1565, International Atomic Energy Agency, Vienna, pp 55–63Google Scholar
  21. 21.
    Zal U’yun WM, Yii MW, Mohd-Ashhar K, Khairuddin MK, Abdul-Kadir I, Mohd-Abd-Wahab Y (2017) Assessment of natural radioactivity level and radiological index in the vicinity of Lynas rare-earth processing plants. ASEAN J Sci Technol Dev 34:67–78CrossRefGoogle Scholar
  22. 22.
    Carroll J, Lerche I (1996) A note on partition coefficient distributions. Math Geol 28(8):1025–1033CrossRefGoogle Scholar
  23. 23.
    Buesseler KO, Jayne SR, Fisher NS, Rypina II, Baumann H, Breier CF, Douglass EM, George J, Macdonald AM, Baumann Z, Miyamoto H, Nishikawa J, Pike SM, Yoshida S (2012) Fukushima-derived radionuclides in the ocean and biota off Japan. Proc Nat Acad Sci USA 109(16):5984–5988CrossRefGoogle Scholar
  24. 24.
    IAEA (2001) Generic models for use in assessing the impact of discharges of radioactive substances to the environment, Safety report series, International Atomic Energy Agency, Vienna, Austria, 229 ppGoogle Scholar
  25. 25.
    Hong GH, Baskaran M, Povinec PP (2004) Artificial radionuclides in the Western North Pacific: a review. In: Shiyomi M et al (eds) Global environmental change in the ocean and on land, pp 147–172Google Scholar
  26. 26.
    Ikäheimonen T, Outola I, Vartti V-P, Kotilainen P (2009) Radioactivity in the Baltic Sea: inventories and temporal trends of 137Cs and 90Sr in water and sediments. J Radioanal Nucl Chem 282:419–425CrossRefGoogle Scholar
  27. 27.
    Buesseler KO (2014) Fukushima and ocean radioactivity. Oceanography 27(1):92–105CrossRefGoogle Scholar
  28. 28.
    Behrens E, Schwarzkopf FU, Lübbecke JF, Böning CW (2012) Model simulations on the long-term dispersal of 137Cs released into the Pacific Ocean off Fukushima. Environ Res Lett 7(3):1–10CrossRefGoogle Scholar
  29. 29.
    Hetherington JA, Harvey BR (1978) Uptake of radioactivity by marine sediments and implications for monitoring metal pollutants. Mar Poll Bull 9:102–106CrossRefGoogle Scholar
  30. 30.
    Evangeliou N, Bokoros P, Michaleas S, Florou H, Scoullos M (2006) A comparative study of caesium-137 in central and north—eastern marine environment in Greece. In: 2nd International conference Aqua 2006, water science and technology integrated management of water resources and Watertec 2006—3rd international exhibition of water and environment, At Hellas Exhibition Center Helexpo Palace, Athens, GreeceGoogle Scholar
  31. 31.
    Mahmood ZUW, Ishak AK, Mohamed N, Wo YM, Samuding K (2015) Pemetaan keradioaktifan marin di Malaysia. Dewan Bahasa dan Pustaka, Kuala Lumpur (in Malay), p 296Google Scholar
  32. 32.
    Zal U’yun WM, Yii MW, Mohd-Ashhar K, Khairuddin MK, Abdul-Kadir I, Mohd-Abd-Wahab Y, Mohamed N (2018) Marine radioactivity of 134Cs and 137Cs in the Malaysian Economic Exclusive Zone after the Fukushima accident. J Radioanal Nucl Chem 318(3):2165–2172CrossRefGoogle Scholar
  33. 33.
    Kasamatsu F, Ishikawa Y (1997) Natural variation of radionuclide 137Cs concentration in marine organisms with special reference to the effect of food habits and trophic level. Mar Ecol Prog Ser 160:109–120CrossRefGoogle Scholar
  34. 34.
    Narimatsu Y, Sohtome T, Yamada M, Shigenobu Y, Kurita Y, Hattori T, Inagawa R (2015) Why do the radionuclide concentrations of Pacific cod depend on the body size? In: Nakata K, Sugisaki H (eds) Impacts of the Fukushima nuclear accident on fish and fishing grounds. Springer, Tokyo, pp 123–138CrossRefGoogle Scholar
  35. 35.
    Carvalho FP, Oliveira JM, Malta M (2011) Radionuclides in deep-sea fish and other organisms from the North Atlantic Ocean. ICES J Mar Sci 68(2):333–340CrossRefGoogle Scholar
  36. 36.
    Nakata K, Sugisaki H (2015) Overview of our research on impacts of the Fukushima Dai-ichi nuclear power plant accident on fish and fishing grounds. In: Nakata K, Sugisaki H (eds) Impacts of the Fukushima nuclear accident on fish and fishing grounds. Springer, Tokyo, pp 1–10CrossRefGoogle Scholar
  37. 37.
    Wada T, Konoplev A, Wakiyama Y, Watanabe K, Furuta Y, Morishita D, Kawata G, Nanba K (2019) Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. J Environ Radioact 204:132–142CrossRefGoogle Scholar
  38. 38.
    Rowan DJ, Chant LA, Rasmussen JB (1998) The fate of radiocesium in freshwater communities: Why is biomagnification variable both within and between species? J Environ Radioact 40(1):15–36CrossRefGoogle Scholar
  39. 39.
    Goulet (2011) Uranium toxicity to fish-homeostasis and toxicology of non-essential metals. Canadian Nuclear Safety CommissionGoogle Scholar
  40. 40.
    Vives i Batlle J (2016) Dynamic modelling of radionuclide uptake by marine biota: application to the Fukushima nuclear power plant accident. J Environ Radioact 151(2):502–511CrossRefGoogle Scholar
  41. 41.
    Ambe D, Kaeriyama H, Shigenobu Y, Fujimoto K, Ono T, Sawada H, Saito H, Miki S, Setou T, Morita T, Watanabe T (2014) A high-resolved spatial distribution of radiocesium in sea sediment derived from Fukushima Dai-ichi Nuclear Power Plant. J Environ Radioact 133:264–275CrossRefGoogle Scholar
  42. 42.
    Wong GTF, Chao S-Y, Li Y-H, Chung Y-C (2000) Keep-exchange processes between the Kuroshio and the East China Sea shelf. Continen Shelf Res 20:331–334CrossRefGoogle Scholar
  43. 43.
    Meili M (1994) Radiocaesium as ecological tracer in aquatic systems—a review. In: Dahlgaard H (ed) Nordic radioecology—the transfer of radionuclides through nordic ecosystems to man. Studies in environmental science, vol 62, Elsevier Science BV, Amsterdam, pp 127–139Google Scholar
  44. 44.
    Otosaka S, Kobayashi T (2013) Sedimentation and remobilizationof radiocesium in the coastal area of Ibaraki, 70 km south of the Fukushima Dai-ichi Nuclear Power Plant. Environ Monit Assess 185:5419–5433CrossRefGoogle Scholar
  45. 45.
    Oguri K, Kawamura K, Sakaguchi A, Toyofuku T, Kasaya T, Murayama M, Fujikura K, Glud RN, Kitazato H (2013) Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki Earthquake. Sci Rep 3:1915–1921CrossRefGoogle Scholar
  46. 46.
    IAEA (2004) Sediment distribution coefficients and concentration factors for biota in the marine environment. Technical reports series, no. 422Google Scholar
  47. 47.
    Børrentzen P, Salbu B (2002) Fixation of Cs to marine sediments estimated by a stochastic modeling approach. J Environ Radioact 61:1–20CrossRefGoogle Scholar
  48. 48.
    Tsukada H, Takeda A, Hisamatsu S, Inaba J (2008) Concentration and specific activity of fallout 137Cs in extracted and particle-size fractions of cultivated soils. J Environ Radioact 99:875–881CrossRefGoogle Scholar
  49. 49.
    Qin H, Yokoyama Y, Fan Q, Iwatani H, Tanaka K, Sakaguchi A, Kanai Y, Zhu J, Onda Y, Takahashi Y (2012) Investigation of cesium adsorption on soil and sediment samples from Fukushima Prefecture by sequential extraction and EXAFS technique. Geochem J 46:297–302CrossRefGoogle Scholar
  50. 50.
    Kusakabe M, Oikawa S, Takata H, Misonoo J (2013) Spatiotemporal distributions of Fukushima-derived radionuclides in nearby marine surface sediments. Biogeosciences 10:5019–5030CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Zal U’yun Wan Mahmood
    • 1
    Email author
  • Mei-Wo Yii
    • 1
  • Dainee Norfardzila Ahmad Tugi
    • 1
  • Norfaizal Mohamed
    • 1
  • Nooradilah Abdullah
    • 1
  • Salahuddin Muhamad
    • 1
  • Mohd Tarmizi Ishak
    • 1
  • Mohamad Noh Sawon
    • 1
  • Muhammad Izzat Muammar Ramli
    • 1
  1. 1.Radiochemistry and Environment Laboratory (RAS)Malaysian Nuclear AgencyKajangMalaysia

Personalised recommendations