Neutron activation analysis and data mining techniques to discriminate between beef cattle diets

  • Yuniel Tejeda MazolaEmail author
  • Elisabete A. De Nadai Fernandes
  • Gabriel A. Sarriés
  • Márcio A. Bacchi
  • Cláudio L. Gonzaga


Neutron activation analysis and data mining techniques were combined for assessing the mineral composition of diets commonly used to feed beef cattle in Brazil. Among twenty chemical elements determined, Br, Ca, Cs, La, Sc, Se, Sr, Th and Zn showed statistically significant differences between the two cattle diets studied. Chi square indicated that Cs, Se and Sc provided better diets discrimination. The highest classification performances using these elements were achieved for multilayer perceptron and sequential minimal optimization with prediction accuracy of 100%.


Multielement isotopic technique Machine learning Trace elements Beef cattle grain-finished 



Yuniel Tejeda Mazola would like to thank the Coordination of Improvement of Higher Level Personnel (CAPES) for the scholarship. Special thanks to Beef Passion, in particular, in the person of its president Antônio Ricardo Sechis and the general manager Amauri José Maria Sechis, for offering all technical support during sampling campaigns.

Supplementary material

10967_2019_6874_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 36 kb)


  1. 1.
    ABIEC (2019) Beef report. Perfil da pecuária no Brasil. ABIEC—Associação Brasileira das Indústrias Exportadoras de Carne, São PauloGoogle Scholar
  2. 2.
    FAOSTAT (2018) Livestock processed production database. Accessed 21 Dec 2018Google Scholar
  3. 3.
    ABIEC (2018) Perfil da Pecuária no Brasil. Relatório Anual, ApexBrasilGoogle Scholar
  4. 4.
    Dias-Filho M (2014) Diagnóstico das pastagens no Brasil. Embrapa Amazônia Oriental, BelémGoogle Scholar
  5. 5.
    Alkire DO (2003) Effects of feeding citrus pulp supplements on the performance of growing beef cattle. University of Florida, GainesvilleGoogle Scholar
  6. 6.
    Hill GM (2002) Peanut by-products fed to cattle. Vet Clin N Am Food Anim Pract 18(2):295–315. CrossRefGoogle Scholar
  7. 7.
    Gomes RC, Nunez AJC, Marino CT, de Medeiros SR (2015) Estratégias alimentares para gado de corte: suplementação a pasto, semiconfinamento e confinamento. Embrapa Gado de Corte-Capítulo em livro científico (ALICE)Google Scholar
  8. 8.
    IHS_Markit (2019) Animal feeds: phosphate supplements. Chemical Economics HandbookGoogle Scholar
  9. 9.
    FAOSTAT (2018) Crops production database. Accessed 21 Dec 2018Google Scholar
  10. 10.
    Avilés C, Martínez A, Domenech V, Peña F (2015) Effect of feeding system and breed on growth performance, and carcass and meat quality traits in two continental beef breeds. Meat Sci 107:94–103CrossRefGoogle Scholar
  11. 11.
    Irshad A, Kandeepan G, Kumar S, Ashish K, Vishnuraj M, Shukla V (2013) Factors influencing carcass composition of livestock: a review. J Anim Prod Adv 3(5):177–186CrossRefGoogle Scholar
  12. 12.
    Rotta PP, Prado RMd, Prado INd, Valero MV, Visentaine JV, Silva RR (2009) The effects of genetic groups, nutrition, finishing systems and gender of Brazilian cattle on carcass characteristics and beef composition and appearance: a review. Asian Aust J Anim Sci 22(12):1718–1734CrossRefGoogle Scholar
  13. 13.
    Schmidt O, Quilter JM, Bahar B, Moloney AP, Scrimgeour CM, Begley IS, Monahan FJ (2005) Inferring the origin and dietary history of beef from C, N and S stable isotope ratio analysis. Food Chem 91(3):545–549. CrossRefGoogle Scholar
  14. 14.
    Schwertl M, Auerswald K, Schnyder H (2003) Reconstruction of the isotopic history of animal diets by hair segmental analysis. Rapid Commun Mass Spectrom 17(12):1312–1318. CrossRefPubMedGoogle Scholar
  15. 15.
    Greenberg RR, Bode P, De Nadai Fernandes EA (2011) Neutron activation analysis: a primary method of measurement. Spectrochim Acta Part B 66(3):193–241. CrossRefGoogle Scholar
  16. 16.
    Lindstrom RM (2018) Nuclear analysis at NBS and NIST. J Radioanal Nucl Chem 318(3):1465–1471. CrossRefGoogle Scholar
  17. 17.
    Waheed S, Siddique N, Rahman A, Zaidi JH, Ahmad S (2004) INAA for dietary assessment of essential and other trace elements in fourteen fruits harvested and consumed in Pakistan. J Radioanal Nucl Chem 260(3):523–531. CrossRefGoogle Scholar
  18. 18.
    Pourimani R, Fathivand AA, Ahmadi M (2019) Determination of mass fractions of 12 elements in more common apple varieties in Iran by instrumental neutron activation analysis. J Radioanal Nucl Chem 320(2):345–350. CrossRefGoogle Scholar
  19. 19.
    Fernandes EAN, Bacchi MA, Sarriés GA, Gonzaga CL, Sarriés SRV, Fogaça AA, Silva GA (2016) Trace elements for tracking beef production in different biomes of Brazil. Paper presented at the food factor I Barcelona conference, BarcelonaGoogle Scholar
  20. 20.
    Turra C, De Nadai Fernandes EA, Bacchi MA, Barbosa Júnior F, Sarriés GA, Blumer L (2011) Chemical elements in organic and conventional sweet oranges. Biol Trace Elem Res 144(1):1289–1294. CrossRefPubMedGoogle Scholar
  21. 21.
    Kato LS, De Nadai Fernandes EA, Bacchi MA, Sarriés GA (2018) Elemental composition of Brazilian rice grains from different cultivars and origins. J Radioanal Nucl Chem 318(1):745–751. CrossRefGoogle Scholar
  22. 22.
    Rahman M, Islam MA, Khan RA (2018) Characterization of chemical elements in common spices of Bangladesh for dietary intake and possible health risk assessment by INAA and AAS techniques. J Radioanal Nucl Chem 318(2):1347–1357. CrossRefGoogle Scholar
  23. 23.
    Pérez-Rodríguez M, Gaiad JE, Hidalgo MJ, Avanza MV, Pellerano RG (2019) Classification of cowpea beans using multielemental fingerprinting combined with supervised learning. Food Control 95:232–241. CrossRefGoogle Scholar
  24. 24.
    Maione C, de Paula ES, Gallimberti M, Batista BL, Campiglia AD, Barbosa F Jr, Barbosa RM (2016) Comparative study of data mining techniques for the authentication of organic grape juice based on ICP–MS analysis. Expert Syst Appl 49:60–73. CrossRefGoogle Scholar
  25. 25.
    Turra C, Dias de Lima M, Fernandes EADN, Bacchi MA, Barbosa F, Barbosa R (2017) Multielement determination in orange juice by ICP–MS associated with data mining for the classification of organic samples. Inf Process Agric 4(3):199–205. CrossRefGoogle Scholar
  26. 26.
    Barbosa RM, Batista BL, Varrique RM, Coelho VA, Campiglia AD, Barbosa F (2014) The use of advanced chemometric techniques and trace element levels for controlling the authenticity of organic coffee. Food Res Int 61:246–251. CrossRefGoogle Scholar
  27. 27.
    Barbosa RM, de Paula ES, Paulelli AC, Moore AF, Souza JMO, Batista BL, Campiglia AD, Barbosa F (2016) Recognition of organic rice samples based on trace elements and support vector machines. J Food Compos Anal 45:95–100. CrossRefGoogle Scholar
  28. 28.
    Borges EM, Gelinski JMLN, de Oliveira Souza VC, Barbosa F Jr, Batista BL (2015) Monitoring the authenticity of organic rice via chemometric analysis of elemental data. Food Res Int 77:299–309. CrossRefGoogle Scholar
  29. 29.
    França EJ, Fernandes EAN, Bacchi MA (2003) Ni–Cr alloy as neutron flux monitor: composition and homogeneity assessment by NAA. J Radioanal Nucl Chem 257(1):113–115CrossRefGoogle Scholar
  30. 30.
    Bacchi MA, Fernandes EAN (2003) Quantu design and development of a software package dedicated to ko-standardized NAA. J Radioanal Nucl Chem 257(3):577–582CrossRefGoogle Scholar
  31. 31.
    Bacchi MA, Fernandes EAN, Oliveira H (2000) Brazilian experience on ko stardardized neutron activation analysis. J Radioanal Nucl Chem 245:217–222CrossRefGoogle Scholar
  32. 32.
    Bacchi MA, Fernandes EAN, França EJ (2000) Semiempirical approach for the determination of HPGe detector photopeak efficiency aiming at ko INAA. J Radioanal Nucl Chem 245:209–215CrossRefGoogle Scholar
  33. 33.
    Sumaiya Thaseen I, Aswani Kumar C (2017) Intrusion detection model using fusion of Chi square feature selection and multi class SVM. J King Saud Univ Comput Inf Sci 29(4):462–472. CrossRefGoogle Scholar
  34. 34.
    Drivelos SA, Higgins K, Kalivas JH, Haroutounian SA, Georgiou CA (2014) Data fusion for food authentication. Combining rare earth elements and trace metals to discriminate “Fava Santorinis” from other yellow split peas using chemometric tools. Food Chem 165:316–322. CrossRefPubMedGoogle Scholar
  35. 35.
    Bisutti V, Merlanti R, Serva L, Lucatello L, Mirisola M, Balzan S, Tenti S, Fontana F, Trevisan G, Montanucci L, Contiero B, Segato S, Capolongo F (2019) Multivariate and machine learning approaches for honey botanical origin authentication using near infrared spectroscopy. J Near Infrared Spectrosc 27(1):65–74. CrossRefGoogle Scholar
  36. 36.
    Maione C (2016) Mineração de dados para o reconhecimento da origem e do tipo de alimentos e outras substâncias com base em sua composição química. Universidade Federal de Goiás, GoiâniaGoogle Scholar
  37. 37.
    ISO (2015) Statistical methods for use in proficiency testing by interlaboratory comparison. ISO 13528, vol ISO 13528:2015(E)Google Scholar
  38. 38.
    Konieczka P, Namiesnik J (2016) Quality assurance and quality control in the analytical chemical laboratory: a practical approach. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Nuclear Energy Center for AgricultureUniversity of São PauloPiracicabaBrazil
  2. 2.College of Agriculture Luiz de QueirozPiracicabaBrazil

Personalised recommendations