Advertisement

Experimental and Monte Carlo determination of HPGe detector efficiency

  • Miroslav JeškovskýEmail author
  • Andrej Javorník
  • Róbert Breier
  • Jarmila Slučiak
  • Pavel P. Povinec
Article
  • 6 Downloads

Abstract

Monte Carlo model has been developed using the GEANT code for calculation of the full energy peak efficiency of a HPGe detector operating in the Slovak Institute of Metrology. The model has been used for calculation of the HPGe detector efficiency for gamma-spectrometry measurements associated with the development of a national radon standard. The detector model was validated by comparison of simulated efficiencies with measured experimental values for point sources and for 450 mL Marinelli beaker. A reasonable, up to 5% agreement between the simulated and experimental results was achieved in the energy range from 100 to 1800 keV.

Keywords

HPGe Monte Carlo Geant Full energy peak efficiency 

Notes

Acknowledgements

This work was supported by the Slovak Research and Development Agency under Contract No. APVV-15-0017.

References

  1. 1.
    Waibel E, Grosswendt B (1975) Determination of detector efficiencies for gamma ray energies up to 12 MeV. I. Experimental methods. Nucl Instrum Methods 131:133–141CrossRefGoogle Scholar
  2. 2.
    Jovanovic S, Dlabac A, Mihaljevic N (2010) ANGLE v2.1–new version of the computer code for semiconductor detector gamma-efficiency calculations. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 622:385–391CrossRefGoogle Scholar
  3. 3.
    Venkataraman R, Bronson F, Atrashkevich V et al (2005) Improved detector response characterization method in ISOCS and LabSOCS. J Radioanal Nucl Chem 264:213–219CrossRefGoogle Scholar
  4. 4.
    Zhang J, Chen X, Zhang C et al (2014) Development of a software package for solid-angle calculations using the Monte Carlo method. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 736:40–45CrossRefGoogle Scholar
  5. 5.
    Yücel H, Zümrüt S, Narttürk RB, Gedik G (2019) Efficiency calibration of a coaxial HPGe detector-Marinelli beaker geometry using an 152Eu source prepared in epoxy matrix and its validation by efficiency transfer method. Nucl Eng Technol 51:526–532CrossRefGoogle Scholar
  6. 6.
    Briesmeister JF (2000) MCNP—a general Monte carlo N-particle transport code. Los Alamos Natl Lab 790Google Scholar
  7. 7.
    Allison J, Amako K, Apostolakis J et al (2004) GEANT4–a simulation toolkit. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 506:250–303Google Scholar
  8. 8.
    Khan W, Zhang Q, He C, Saleh M (2018) Monte Carlo simulation of the full energy peak efficiency of an HPGe detector. Appl Radiat Isot 131:67–70CrossRefGoogle Scholar
  9. 9.
    Dokania N, Singh V, Mathimalar S et al (2014) Characterization and modeling of a low background HPGe detector. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 745:119–127CrossRefGoogle Scholar
  10. 10.
    Haj-Heidari MT, Safari MJ, Afarideh H, Rouhi H (2016) Method for developing HPGe detector model in Monte Carlo simulation codes. Radiat Meas 88:1–6CrossRefGoogle Scholar
  11. 11.
    Montalván Olivares DM, Guevara MVM, Velasco FG (2017) Determination of the HPGe detector efficiency in measurements of radioactivity in extended environmental samples. Appl Radiat Isot 130:34–42CrossRefGoogle Scholar
  12. 12.
    Schläger M (2007) Precise modelling of coaxial germanium detectors in preparation for a mathematical calibration. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 580:137–140CrossRefGoogle Scholar
  13. 13.
    Conti CC, Salinas ICP, Zylberberg H (2013) A detailed procedure to simulate an HPGe detector with MCNP5. Prog Nucl Energy 66:35–40CrossRefGoogle Scholar
  14. 14.
    Garcı́a-Talavera M, Neder H, Daza MJ, Quintana B (2000) Towards a proper modeling of detector and source characteristics in Monte Carlo simulations. Appl Radiat Isot 52:777–783CrossRefGoogle Scholar
  15. 15.
    Gasparro J, Hult M, Johnston PN, Tagziria H (2008) Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 594:196–201CrossRefGoogle Scholar
  16. 16.
    Maidana NL, Vanin VR, Jahnke V et al (2013) Efficiency calibration of x-ray HPGe detectors for photons with energies above the Ge K binding energy. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 729:371–380CrossRefGoogle Scholar
  17. 17.
    Elanique A, Marzocchi O, Leone D et al (2012) Dead layer thickness characterization of an HPGe detector by measurements and Monte Carlo simulations. Appl Radiat Isot 70:538–542CrossRefGoogle Scholar
  18. 18.
    Ródenas J, Pascual A, Zarza I et al (2003) Analysis of the influence of germanium dead layer on detector calibration simulation for environmental radioactive samples using the Monte Carlo method. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 496:390–399CrossRefGoogle Scholar
  19. 19.
    Budjáš D, Heisel M, Maneschg W, Simgen H (2009) Optimisation of the MC-model of a p-type Ge-spectrometer for the purpose of efficiency determination. Appl Radiat Isot 67:706–710CrossRefGoogle Scholar
  20. 20.
    Boson J, Ågren G, Johansson L (2008) A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 587:304–314CrossRefGoogle Scholar
  21. 21.
    Berndt R, Mortreau P (2012) Monte Carlo modelling of a N-type coaxial high purity germanium detector. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 694:341–347CrossRefGoogle Scholar
  22. 22.
    Chuong HD, Thanh TT, Ngoc Trang LT et al (2016) Estimating thickness of the inner dead-layer of n-type HPGe detector. Appl Radiat Isot 116:174–177CrossRefGoogle Scholar
  23. 23.
    Hedman A, Bahar Gogani J, Granström M et al (2015) Characterization of HPGe detectors using computed tomography. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 785:21–25CrossRefGoogle Scholar
  24. 24.
    Saraiva A, Oliveira C, Reis M et al (2016) Study of the response of an ORTEC GMX45 HPGe detector with a multi-radionuclide volume source using Monte Carlo simulations. Appl Radiat Isot 113:47–52CrossRefGoogle Scholar
  25. 25.
    Dryak P, Kovar P, Suran J (2002) Determination of corrections to true summations of photons for measurements in Marinelli beakers. Appl Radiat Isot 56:111–116CrossRefGoogle Scholar
  26. 26.
    Campbell JL, McNelles LA (1974) Americium-241 as a low-energy photon intensity standard. Nucl Instrum Methods 117:519–532CrossRefGoogle Scholar
  27. 27.
    Andreotti E, Hult M, Marissens G et al (2014) Determination of dead-layer variation in HPGe detectors. Appl Radiat Isot 87:331–335CrossRefGoogle Scholar
  28. 28.
    Courtine F, Pilleyre T, Sanzelle S, Miallier D (2008) Ge well detector calibration by means of a trial and error procedure using the dead layers as a unique parameter in a Monte Carlo simulation. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 596:229–234CrossRefGoogle Scholar
  29. 29.
    Dryak P, Kovar P (2006) Experimental and MC determination of HPGe detector efficiency in the 40–2754 keV energy range for measuring point source geometry with the source-to-detector distance of 25cm. Appl Radiat Isot 64:1346–1349CrossRefGoogle Scholar
  30. 30.
    Hau ID, Russ WR, Bronson F (2009) MCNP HPGe detector benchmark with previously validated Cyltran model. Appl Radiat Isot 67:711–715CrossRefGoogle Scholar
  31. 31.
    Guerra JG, Rubiano JG, Winter G et al (2015) A simple methodology for characterization of germanium coaxial detectors by using Monte Carlo simulation and evolutionary algorithms. J Environ Radioact 149:8–18CrossRefGoogle Scholar
  32. 32.
    Quang Huy N (2010) The influence of dead layer thickness increase on efficiency decrease for a coaxial HPGe p-type detector. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 621:390–394CrossRefGoogle Scholar
  33. 33.
    CERN Program Library Office (1993) GEANT—detector description and simulation tool. CERN, GenevaGoogle Scholar
  34. 34.
    Kováčik A, Sýkora I, Povinec PP (2013) Monte Carlo and experimental efficiency calibration of gamma-spectrometers for non-destructive analysis of large volume samples of irregular shapes. J Radioanal Nucl Chem 298:665–672CrossRefGoogle Scholar
  35. 35.
    Breier R, Ješkovský M, Palušová V, Javorník A, Ometáková J, Povinec PP (2019) Monte Carlo simulations of HPGe detectors efficiencies for radon measurements in the air using Marinelli containers. J Environ Radioact (submitted)Google Scholar
  36. 36.
    Wang Z, Kahn B, Valentine JD (2002) Efficiency calculation and coincidence summing correction for germanium detectors by Monte Carlo simulation. IEEE Trans Nucl Sci 49(I):1925–1931CrossRefGoogle Scholar
  37. 37.
    Huy NQ, Binh DQ, An VX (2012) A study for improving detection efficiency of an HPGe detector based gamma spectrometer using Monte Carlo simulation and genetic algorithms. Appl Radiat Isot 70:2695–2702CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia
  2. 2.Department of Ionizing RadiationSlovak Institute of MetrologyBratislavaSlovakia
  3. 3.Faculty of Mechanical EngineeringSlovak University of Technology in BratislavaBratislavaSlovakia

Personalised recommendations