Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 3, pp 1537–1547 | Cite as

Application of the INAA methods for KRISS infant formula CRM analysis: standardization of INAA at KRISS

  • Hana ChoEmail author
  • Kishore B. Dasari
  • Radojko Jaćimović
  • Rolf Zeisler
  • Nicholas E. Sharp
  • Sun-Ha Kim
  • Gwang Min Sun
  • Yong-Hyeon Yim


We have established an instrumental neutron activation analysis (INAA) method, including k0-based INAA, at the Korea Research Institute of Standards and Science (KRISS) for the certification of reference materials. As part of establishing INAA measurements, KRISS infant formula certified reference material was analysed for multiple elements at three different metrological institutes: KRISS and NIST for the standard comparator method, and JSI for the k0-INAA method. The mass fraction of most elements was consistent within expanded uncertainty (k = 2). In addition, the results were used to verify the validity of elemental analysis of Zn using the standard comparator INAA at KRISS, and spreadsheet-based INAA calculations were evaluated.


Instrumental neutron activation analysis Standard comparator method k0-standarization method Certified reference material Primary ratio method Infant formula 



We greatly appreciate the support received from Dr. In Jung Kim at KRISS. This work was supported by KRISS under the Project, “Establishing Measurement Standards for Inorganic Analysis” Grant 18011054. Part of this work was supported by KAERI trough the Korea Government Project No. MSIT/1711078081. The Slovenian co-author would like to thank the Slovenian Research Agency (ARRS) for financial support of program group P1-0143 and the Metrology Institute of the Republic of Slovenia (MIRS), as his work contributes to MIRS/IJS Contract No. 6401-5/2009/27 for activities and obligations performed as a Designate Institute as an etalon for amount of substance/chemical trace elements/in the organic and inorganic materials. The authors would also like to thank the NCNR for support and access to reactor facilities.


  1. 1.
    Greenberg RR, Bode P, De Nadai Fernandes EA (2011) Neutron activation analysis: a primary method of measurement. Spectrochim Acta Part B At Spectrosc 66(3–4):193–241CrossRefGoogle Scholar
  2. 2.
    Kim SH, Lim Y, Hwang E, Yim Y-H (2016) Development of an ID ICP-MS reference method for the determination of Cd, Hg and Pb in a cosmetic powder certified reference material. Anal Methods 8:796–804CrossRefGoogle Scholar
  3. 3.
    Lee H-S, Kim SH, Jeong J-S, Lee Y-M, Yim Y-H (2015) Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry. Metrologia 52(5):619–627CrossRefGoogle Scholar
  4. 4.
    Kim SH, Lim Y, Hwang E, Yim YH (2015) overcoming spectral interferences in the determination of cadmium in various food materials using isotope dilution inductively-coupled plasma mass spectrometry. Bull Korean Chem Soc 36(3):936–943Google Scholar
  5. 5.
    De Soete D, Gijbels R, Hoste J (1972) Neutron activation analysis. Wiley-Interscience, LondonGoogle Scholar
  6. 6.
    De Corte F (1987) The k 0-standardization method: a move to the optimization of neutron activation analysis. Habilitation Thesis, University of Gent, BelgiumGoogle Scholar
  7. 7.
    De Corte F, Simonits A (1994) Vade mecum for k 0-users. DSM Research, GeleenGoogle Scholar
  8. 8.
    Simonits A, De Corte F, Hoste J (1975) Single-comparator methods in reactor neutron activation analysis. J Radioanal Chem 24:31–46CrossRefGoogle Scholar
  9. 9.
    Lindstrom RM (2018) Nuclear analysis at NBS and NIST. J Radioanal Nucl Chem 318(3):1465–1471CrossRefGoogle Scholar
  10. 10.
    Jaćimović R, Smodiš B, Bučar T, Stegnar P (2003) k 0-NAA quality assessment by analysis of different certified reference materials using the KAYZERO/SOLCOI software. J Radioanal Nucl Chem 257(3):659–663CrossRefGoogle Scholar
  11. 11.
    Jaćimović R, De Corte F, Kennedy G, Vermaercke P, Revay Z (2014) The 2012 recommended k 0 database. J Radioanal Nucl Chem 300(2):589–592CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Jaćimović R, Trkov A, Stegnar P (2012) Error in k 0-NAA measurement due to temporal variation in the neutron flux in TRIGA Mark II reactor. J Radioanal Nucl Chem 294(1):155–161CrossRefGoogle Scholar
  14. 14.
    Jaćimović R (2014) Comparison of relative INAA and k 0-INAA using soil and sediment reference materials. J Radioanal Nucl Chem 300(2):663–672CrossRefGoogle Scholar
  15. 15.
    Esen AN, Haciyakupoglu S, Erenturk S (2018) Comparison of relative INAA and k 0-INAA using proficiency test materials at ITU TRIGA Mark II research reactor. J Radioanal Nucl Chem 315(3):677–683CrossRefGoogle Scholar
  16. 16.
    Bedregal PS, Mendoza PA, Ubillús MS, Cohen IM, Montoya EH (2014) The k 0 and relative INAA methods to determine elements in entire archaeological pottery objects. J Radioanal Nucl Chem 300(2):673–678CrossRefGoogle Scholar
  17. 17.
    Osborne OD, Pring A, Popelka-filcoff RS, Bennett JW, Stopic A, Glascock MD, Lenehan CE (2012) Comparison of the relative comparator and k 0 neutron activation analysis techniques for the determination of trace-element concentrations in pyrite. Mineral Mag 76(5):1229–1245CrossRefGoogle Scholar
  18. 18.
    Achary R, Dasari KB, Brahmaji Rao JS, Venkata Subramani CR, Reddy AVR (2013) Characterization of irradiation sites of Apsara reactor for k 0-based IM-NAA and its validation and application. IEEE Trans Nucl Sci 60(4):3051–3056CrossRefGoogle Scholar
  19. 19.
    Chung Y-S, Moon J-H, Kim S-H, Kang S-H, Kim Y-J (2007) Determination of the elemental composition of the bottom ash of a municipal incinerator by instrumental neutron activation analysis. J Radioanal Nucl Chem 271(2):339–344CrossRefGoogle Scholar
  20. 20.
    Martínez MIV, Zeisler R, De Nadai Fernandes EA, Bacchi MA, Turkoglu DJ (2018) Characterization of an innovative sugarcane leaves reference material by INAA and PGAA. J Radioanal Nucl Chem 318(1):739–744CrossRefGoogle Scholar
  21. 21.
    Şahin D, Radulović V, Lindstrom RM, Trkov A (2014) Reevaluation of neutron flux characterization parameters for NIST RT-2 facility. J Radioanal Nucl Chem 300(2):499–506CrossRefGoogle Scholar
  22. 22.
    Becker DA (2000) 30 years of reactor characterization on the NBSR. J Radioanal Nucl Chem 244(2):361–365CrossRefGoogle Scholar
  23. 23.
    SRM 1849a; Infant/Adult Nutritional Formula I (milk-based); National Institute of Standards and Technology; U.S. Department of Commerce: Gaithersburg, MD. 13 July 2018Google Scholar
  24. 24.
    SRM 1547; Peach Leaves; National Institute of Standards and Technology; U.S. Department of Commerce: Gaithersburg, MD. 02 April 2019Google Scholar
  25. 25.
    Simonits A, Östör J, Kálvin S, Fazekas B (2003) HyperLab: a new concept in gamma-ray spectrum analysis. J Radioanal Nuclear Chem 257(3):589–595CrossRefGoogle Scholar
  26. 26.
    User’s Manual for reactor neutron activation analysis (NAA) using the k 0 standardization method (November 2005). Kayzero for Windows (KayWin®) Version 2Google Scholar
  27. 27.
    Jovanović S, Vukotić P, Smodiš B, Jaćimović R, Mihaljević N, Stegnar P (1989) Epithermal neutron flux characterization of the TRIGA MARK II reactor, Ljubljana, Yugoslavia, for use in NAA. J Radioanal Nucl Chem 129(2):343–349CrossRefGoogle Scholar
  28. 28.
    De Corte F, van Sluijs R, Simonits A, Kučera J, Smodiš B, Byrne AR, De Wispelaere A, Bossus D, Frána J, Horák Z, Jaćimović R (2001) Installation and calibration of Kayzero-assisted NAA in three Central European countries via a Copernicus project. Appl Radiat Isot 55(3):347–354CrossRefGoogle Scholar
  29. 29.
    Choi HD, Jung NS, Park BG (2012) New development of hypergam and its test of performance for γ-ray spectrum analysis. Nucl Eng Technol 44(7):781–790CrossRefGoogle Scholar
  30. 30.
    Fleming RF (1982) Neutron self-shielding factors for simple geometries. Int J Appl Radiat Isot 33(11):1263–1268CrossRefGoogle Scholar
  31. 31.
    Blaauw M (1996) The derivation and proper use of Stewart’s formula for thermal neutron self-shielding in scattering media. Nucl Sci Eng J Am Nucl Soc 124(3):431–435CrossRefGoogle Scholar
  32. 32.
    Lindstrom RM, Fleming RF (2008) Neutron self-shielding factors for simple geometries, revisited. Chem Anal (Warsaw) 53(6):855–859Google Scholar
  33. 33.
    Debertin K, Helmer RG (1988) Gamma- and X-Ray spectrometry with semiconductor detectors. North Holland, AmsterdamGoogle Scholar
  34. 34.
    X-Ray Mass Attenuation Coefficients. National Institute of Standards and Technology. Accessed 6 Sept 2018
  35. 35.
    Jaćimović R, Horvat M (2004) Determination of total mercury in environmental and biological samples using k 0-INAA, RNAA and CVAAS/AFS techniques: advantages and disadvantages. J Radioanal Nucl Chem 259(3):385–390CrossRefGoogle Scholar
  36. 36.
    Zeisler R, Cho H, Ribeiro Junior IS, Shetty MG, Turkoglu D (2017) On neutron activation analysis with cc coincidence spectrometry. J Radioanal Nucl Chem 314(1):513–519CrossRefGoogle Scholar
  37. 37.
    Zeisler R, Sharp N, Cho H (2017) Assessment of INAA results for value assignment in reference materials. In: 6th Asia-Pacific symposium on radiochemistry (conference proceedings)Google Scholar
  38. 38.
    Lindstrom RM, Blaauw M, Fleming RF (2003) The half-life of 76As. J Radioanal Nucl Chem 257(3):489–491CrossRefGoogle Scholar
  39. 39.
    Tavares OAP, Terranova ML (2018) Toward an accurate determination of half-life of 147Sm isotope. Appl Radiat Isot 139:26–33CrossRefGoogle Scholar
  40. 40.
    Lindstrom RM, Fleming RF (1995) Dead time, pileup, and accurate gamma-ray spectrometry. Radioact Radiochem 6(2):20–27Google Scholar
  41. 41.
    Chilian C, St-Pierre J, Kennedy G (2008) Complete thermal and epithermal neutron self-shielding corrections for NAA using a spreadsheet. J Radioanal Nucl Chem 278(3):745–749CrossRefGoogle Scholar
  42. 42.
    Taseska M, Jaćimović R, Stibilj V, Stafilov T, Makreski P, Jovanovski G (2012) Determination of trace elements in some copper minerals by k 0-neutron activation analysis. Appl Radiat Isot 70(1):35–39CrossRefGoogle Scholar
  43. 43.
    Salles PMB, Menezes MABC, Jaćimović R, Campos TPR (2016) Inorganic elements in sugar samples consumed in several countries. J Radioanal Nucl Chem 308(2):485–493CrossRefGoogle Scholar
  44. 44.
    Pavlin M, Jaćimović R, Stergaršek A, Frkal P, Koblar M, Horvat M (2018) Distribution and accumulation of major and trace elements in gypsum samples from lignite combustion power plant. Am J Anal Chem 9(12):602–621CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Center for Analytical ChemistryKorea Research Institute of Standards and ScienceDaejeonRepublic of Korea
  2. 2.Neutron and Radioisotope Application Research DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  3. 3.Department of Environmental SciencesJožef Stefan InstituteLjubljanaSlovenia
  4. 4.Chemical Sciences DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations