Advertisement

Cu2O nanoparticles grafting onto PLA fibers via electron beam irradiation: bifunctional composite fibers with enhanced photocatalytic of organic pollutants in aqueous and soil systems

  • Qin Xu
  • Zhan Huang
  • Shuting Ji
  • Juan Zhou
  • Rongzhen ShiEmail author
  • Wenyan ShiEmail author
Article
  • 5 Downloads

Abstract

This work provide a new method for the preparation of nanofibers act as bifunctional photocatalytic nano-materials to degrade organic pollutants in water and soil systems effectively. Using PLA fibers as the carrier of Cu2O nanoparticles, Cu2O/PLA composite nanofibers were fabricated by surface modification induced via electron beam irradiation. During this treatment, carbonyl groups and hydroxyl groups from the surface of PLA and Cu2O were conjugated by strong hydrogen bonding effect, while the Cu2O nanoparticles was evenly distributed without agglomeration. Thus obtained composite nanofibers exhibited excellent photocatalytic performance and enhanced antibacterial activities against Staphylococcus aureus and Escherichia coli.

Keywords

Electron beam irradiation Modification Photodegradation Water system Soil system Antibacterial efficiency 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11775138, 11675098 and 41473089), Innovation Program of Shanghai Municipal Education Commission (No. 13YZ017) and Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13078).

Compliance with ethical standards

Conflicts of interest

There are no conflicts to declare.

Supplementary material

10967_2019_6842_MOESM1_ESM.docx (132 kb)
Supplementary material 1 (DOCX 132 kb)

References

  1. 1.
    Zhang L, Li P, Gong Z, Li X (2008) Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. J Hazard Mater 158(2–3):478–484.  https://doi.org/10.1016/j.jhazmat.2008.01.119 CrossRefPubMedGoogle Scholar
  2. 2.
    Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359(1–2):25–40.  https://doi.org/10.1016/j.apcata.2009.02.043 CrossRefGoogle Scholar
  3. 3.
    Alcantara MT, Gomez J, Pazos M, Sanroman MA (2008) Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant-electrochemical degradation. Chemosphere 70(8):1438–1444.  https://doi.org/10.1016/j.chemosphere.2007.08.070 CrossRefPubMedGoogle Scholar
  4. 4.
    Carmen Z, Daniela S (2012) Textile organic dyes–characteristics, polluting effects and separation/elimination procedures from industrial effluents—a critical overview. In: Organic pollutants ten years after the Stockholm convention-environmental and analytical update. InTechGoogle Scholar
  5. 5.
    Ahmed Zelekew O, Kuo DH (2016) A two-oxide nanodiode system made of double-layered p-type Ag2O@n-type TiO2 for rapid reduction of 4-nitrophenol. Phys Chem Chem Phys 18(6):4405–4414.  https://doi.org/10.1039/c5cp07320k CrossRefPubMedGoogle Scholar
  6. 6.
    Ren H-T, Jia S-Y, Wu Y, Wu S-H, Zhang T-H, Han X (2014) Improved photochemical reactivities of Ag2O/g-C3N4 in phenol degradation under UV and visible light. Ind Eng Chem Res 53(45):17645–17653.  https://doi.org/10.1021/ie503312x CrossRefGoogle Scholar
  7. 7.
    Wen XJ, Niu CG, Ruan M, Zhang L, Zeng GM (2017) AgI nanoparticles-decorated CeO2 microsheets photocatalyst for the degradation of organic dye and tetracycline under visible-light irradiation. J Colloid Interface Sci 497:368–377.  https://doi.org/10.1016/j.jcis.2017.03.029 CrossRefPubMedGoogle Scholar
  8. 8.
    Li N, Hua X, Wang K, Jin Y, Xu J, Chen M et al (2014) In situ synthesis of uniform Fe2O3/BiOCl p/n heterojunctions and improved photodegradation properties for mixture dyes. Dalton Trans 43(36):13742–13750.  https://doi.org/10.1039/c4dt01999g CrossRefPubMedGoogle Scholar
  9. 9.
    Tian C, Zhang Q, Wu A, Jiang M, Liang Z, Jiang B et al (2012) Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem Commun (Camb) 48(23):2858–2860.  https://doi.org/10.1039/c2cc16434e CrossRefGoogle Scholar
  10. 10.
    Vela N, Martínez-Menchón M, Navarro G, Pérez-Lucas G, Navarro S (2012) Removal of polycyclic aromatic hydrocarbons (PAHs) from groundwater by heterogeneous photocatalysis under natural sunlight. J Photochem Photobiol A 232:32–40.  https://doi.org/10.1016/j.jphotochem.2012.02.003 CrossRefGoogle Scholar
  11. 11.
    Ge L, Na G, Chen CE, Li J, Ju M, Wang Y et al (2016) Aqueous photochemical degradation of hydroxylated PAHs: kinetics, pathways, and multivariate effects of main water constituents. Sci Total Environ 547:166–172.  https://doi.org/10.1016/j.scitotenv.2015.12.143 CrossRefPubMedGoogle Scholar
  12. 12.
    Bai H, Zhou J, Zhang H, Tang G (2017) Enhanced adsorbability and photocatalytic activity of TiO2–graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase. Colloids Surf B Biointerfaces 150:68–77.  https://doi.org/10.1016/j.colsurfb.2016.11.017 CrossRefPubMedGoogle Scholar
  13. 13.
    Yap CL, Gan S, Ng HK (2011) Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere 83(11):1414–1430.  https://doi.org/10.1016/j.chemosphere.2011.01.026 CrossRefPubMedGoogle Scholar
  14. 14.
    Dai Y, Yin L, Niu J (2011) Laccase-carrying electrospun fibrous membranes for adsorption and degradation of PAHs in shoal soils. Environ Sci Technol 45(24):10611–10618.  https://doi.org/10.1021/es203286e CrossRefPubMedGoogle Scholar
  15. 15.
    Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88(1):91–108CrossRefGoogle Scholar
  16. 16.
    Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968.  https://doi.org/10.1016/j.chemosphere.2016.10.115 CrossRefPubMedGoogle Scholar
  17. 17.
    Nakayama N, Hayashi T (2007) Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92(7):1255–1264.  https://doi.org/10.1016/j.polymdegradstab.2007.03.026 CrossRefGoogle Scholar
  18. 18.
    Lin H, Huang C, Li W, Ni C, Shah S, Tseng Y (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B 68(1–2):1–11.  https://doi.org/10.1016/j.apcatb.2006.07.018 CrossRefGoogle Scholar
  19. 19.
    Pal J, Ganguly M, Mondal C, Roy A, Negishi Y, Pal T (2013) Crystal-plane-dependent etching of cuprous oxide nanoparticles of varied shapes and their application in visible light photocatalysis. J Phys Chem C 117(46):24640–24653.  https://doi.org/10.1021/jp409271r CrossRefGoogle Scholar
  20. 20.
    Huang WC, Lyu LM, Yang YC, Huang MH (2012) Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J Am Chem Soc 134(2):1261–1267.  https://doi.org/10.1021/ja209662v CrossRefPubMedGoogle Scholar
  21. 21.
    Xu L, Xu H, Wu S, Zhang X (2012) Synergy effect over electrodeposited submicron Cu2O films in photocatalytic degradation of methylene blue. Appl Surf Sci 258(11):4934–4938.  https://doi.org/10.1016/j.apsusc.2012.01.122 CrossRefGoogle Scholar
  22. 22.
    Liu Y, Huang Q, Jiang G, Liu D, Yu W (2017) Cu2O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation. J Mater Res 32(18):3605–3615.  https://doi.org/10.1557/jmr.2017.307 CrossRefGoogle Scholar
  23. 23.
    Sedighi A, Montazer M, Samadi N (2014) Synthesis of nano Cu2O on cotton: morphological, physical, biological and optical sensing characterizations. Carbohydr Polym 110:489–498.  https://doi.org/10.1016/j.carbpol.2014.04.030 CrossRefPubMedGoogle Scholar
  24. 24.
    Savva I, Kalogirou AS, Chatzinicolaou A, Papaphilippou P, Pantelidou A, Vasile E et al (2014) PVP-crosslinked electrospun membranes with embedded Pd and Cu2O nanoparticles as effective heterogeneous catalytic supports. RSC Adv 4(85):44911–44921.  https://doi.org/10.1039/c4ra06294a CrossRefGoogle Scholar
  25. 25.
    Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. Rsc Adv 5(16):12293–12299.  https://doi.org/10.1039/c4ra12163e CrossRefGoogle Scholar
  26. 26.
    Oliveira JE, Moraes EA, Marconcini JM, Mattoso LHC, Glenn GM, Medeiros ES (2013) Properties of poly(lactic acid) and poly(ethylene oxide) solvent polymer mixtures and nanofibers made by solution blow spinning. J Appl Polym Sci 129(6):3672–3681.  https://doi.org/10.1002/app.39061 CrossRefGoogle Scholar
  27. 27.
    Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846CrossRefGoogle Scholar
  28. 28.
    Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K (2002) New polylactide/layered silicate nanocomposites: role of organoclays. Chem Mater 14(11):4654–4661CrossRefGoogle Scholar
  29. 29.
    Foruzanmehr M, Vuillaume PY, Elkoun S, Robert M (2016) Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers. Mater Des 106:295–304.  https://doi.org/10.1016/j.matdes.2016.05.103 CrossRefGoogle Scholar
  30. 30.
    Gupta KK, Mishra PK, Srivastava P, Gangwar M, Nath G, Maiti P (2013) Hydrothermal in situ preparation of TiO2 particles onto poly(lactic acid) electrospun nanofibres. Appl Surf Sci 264:375–382.  https://doi.org/10.1016/j.apsusc.2012.10.029 CrossRefGoogle Scholar
  31. 31.
    Liu M, Cheng Z, Yan J, Qiang L, Ru X, Liu F et al (2013) Preparation and characterization of TiO2 nanofibers via using polylactic acid as template. J Appl Polym Sci 128(2):1095–1100.  https://doi.org/10.1002/app.38166 CrossRefGoogle Scholar
  32. 32.
    Buzarovska A (2013) PLA nanocomposites with functionalized TiO2 nanoparticles. Polym Plast Technol Eng 52(3):280–286.  https://doi.org/10.1080/03602559.2012.751411 CrossRefGoogle Scholar
  33. 33.
    Luo Y-B, Wang X-L, Xu D-Y, Wang Y-Z (2009) Preparation and characterization of poly(lactic acid)-grafted TiO2 nanoparticles with improved dispersions. Appl Surf Sci 255(15):6795–6801.  https://doi.org/10.1016/j.apsusc.2009.02.074 CrossRefGoogle Scholar
  34. 34.
    Lin Y, Zhang K-Y, Dong Z-M, Dong L-S, Li Y-S (2007) Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly (ester amide). Macromolecules 40(17):6257–6267CrossRefGoogle Scholar
  35. 35.
    Li Y, Sun XS (2010) Preparation and characterization of polymer-inorganic nanocomposites by in situ melt polycondensation of l-lactic acid and surface-hydroxylated MgO. Biomacromol 11:1847–1855CrossRefGoogle Scholar
  36. 36.
    Michota A, Bukowska J (2003) Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J Raman Spectrosc 34(1):21–25.  https://doi.org/10.1002/jrs.928 CrossRefGoogle Scholar
  37. 37.
    Li Y, Chen C, Li J, Sun XS (2011) Synthesis and characterization of bionanocomposites of poly(lactic acid) and TiO2 nanowires by in situ polymerization. Polymer 52(11):2367–2375.  https://doi.org/10.1016/j.polymer.2011.03.050 CrossRefGoogle Scholar
  38. 38.
    Buzarovska A, Gualandi C, Parrilli A, Scandola M (2015) Effect of TiO2 nanoparticle loading on Poly(l-lactic acid) porous scaffolds fabricated by TIPS. Compos B Eng 81:189–195.  https://doi.org/10.1016/j.compositesb.2015.07.016 CrossRefGoogle Scholar
  39. 39.
    Zhang J, Maurer FHJ, Yang M (2011) In situ formation of TiO2 in electrospun poly(methyl methacrylate) nanohybrids. J Phys Chem C 115(21):10431–10441.  https://doi.org/10.1021/jp201613x CrossRefGoogle Scholar
  40. 40.
    Zhang S, Liu Z, Guo X, Cheng L, Wang Z, Shen J (2008) Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 875(2):399–404.  https://doi.org/10.1016/j.jchromb.2008.09.035 CrossRefGoogle Scholar
  41. 41.
    Shin BY, Narayan R (2010) Rheological and thermal properties of the PLA modified by electron beam irradiation in the presence of functional monomer. J Polym Environ 18(4):558–566CrossRefGoogle Scholar
  42. 42.
    El-Sawy NM, El-Arnaouty MB, Ghaffar AMA (2010) γ-Irradiation effect on the non-cross-linked and cross-linked polyvinyl alcohol films. Polym Plast Technol Eng 49(2):169–177.  https://doi.org/10.1080/03602550903284248 CrossRefGoogle Scholar
  43. 43.
    Wang C-T (2007) Photocatalytic activity of nanoparticle gold/iron oxide aerogels for azo dye degradation. J Non-Cryst Solids 353(11–12):1126–1133.  https://doi.org/10.1016/j.jnoncrysol.2006.12.028 CrossRefGoogle Scholar
  44. 44.
    Chen P, Song L, Liu Y, Fang Y-E (2007) Synthesis of silver nanoparticles by γ-ray irradiation in acetic water solution containing chitosan. Radiat Phys Chem 76(7):1165–1168.  https://doi.org/10.1016/j.radphyschem.2006.11.012 CrossRefGoogle Scholar
  45. 45.
    Li Y, Li X, Li J, Yin J (2006) Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res 40(6):1119–1126.  https://doi.org/10.1016/j.watres.2005.12.042 CrossRefPubMedGoogle Scholar
  46. 46.
    Huang L, Peng F, Yu H, Wang H (2009) Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sci 11(1):129–138.  https://doi.org/10.1016/j.solidstatesciences.2008.04.013 CrossRefGoogle Scholar
  47. 47.
    Hill D, O’Donnell J, Perera M, Pomery P, Smetsers P (1995) Mechanism of radiation vulcanization of natural rubber latex sensitized by monoacrylates. J Appl Polym Sci 57(10):1155–1171CrossRefGoogle Scholar
  48. 48.
    Shultz AR, Bovey FA (1956) Electron irradiation of polyacrylates. J Polym Sci 22(102):485–494CrossRefGoogle Scholar
  49. 49.
    Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations