Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 3, pp 1487–1494 | Cite as

Study of structural changes for STS 316L using the positron annihilation lifetime spectroscopy

  • Yeoryeong Jeon
  • Young Rang UhmEmail author
  • Gwang Min Sun
  • Bo-Young Han
  • Jaegi Lee
  • Hyeon Min Lee
  • Junhyun Kwon
  • Yongmin Kim
Article
  • 37 Downloads

Abstract

The defects due to extrusion strengths and the temperature dependent deformities for low carbon stainless steel (STS 316L) were investigated using positron annihilation spectroscopy. The defects were restored after tempering at 700 °C. The gradients of the peak on the positron annihilation lifetime spectrum for a sample annealed at 700 °C is increased compared to the as extruded sample. In addition, we calculated the trapping rate and bulk lifetime based on the theoretical model. Both values are decreased, as the extrusion strengths are reduced. All annealed samples showed reduced trapping rate and bulk lifetime, comparing with as extruded samples.

Keywords

Positron annihilation spectroscopy (PAS) Positron annihilation lifetime spectrum (PALS) STS316L 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (NRF-2017M2A2A6A05018529) and by the R&D program of Korea Atomic Energy Research (KAERI).

References

  1. 1.
    AZoM, AZOMATERIAL, https://www.azom.com/article.aspx?ArticleID=863. Accessed 15 Jul 2019
  2. 2.
    Matera R, Barabash V, Kalinin G, Tanaka S (1998) The materials selection in ITER and the first materials workshop, vol 7, no 5. IAEA ITER EDA NEWSLETTERGoogle Scholar
  3. 3.
    Howell RH, Asoka-Kunar P, Stoeffle W, Hartley J, Sterne P (2007) Materials analysis using positron beam lifetime spectroscopy. In: International workshop on advanced technique of positron generation and control Wako, JapanGoogle Scholar
  4. 4.
    Kirkegaard P, Olsen JV, Eldrup MM (2017) PALSfit3: a software package for analyzing positron lifetime spectra. Technical University of Denmark, LyngbyGoogle Scholar
  5. 5.
    Krause-Rehberg R, Leipner HS (1998) Positron annihilation in semiconductors. Springer, BerlinGoogle Scholar
  6. 6.
    Yabuuchi A, Maekawa M, Kawasuso A (2012) Influence of oversized elements (Hf, Zr, Ti and Nb) on the thermal stability of vacancies in type 316L stainless steel. J Nuclear Mater 430(1–3):190–193CrossRefGoogle Scholar
  7. 7.
    Puska MJ, Nieminen RM (1994) Theory of positron in solids and on solid surfaces. Rev Modern Phys 66(3):841–898CrossRefGoogle Scholar
  8. 8.
    Babich AV, Pogosov VV, Reva VI (2016) Calculations of the probability of positron trapping by a vacancy in a metal and the estimation of the vacancy contribution to the work function of electrons and positrons. Phys Metals Metallogr 117(3):205–213CrossRefGoogle Scholar
  9. 9.
    Puska MJ, Manninen M (1987) Positron trapping rate into small vacancy clusters and light substitutional impurities. J Phys F Metal Phys 17(11):2235–2248CrossRefGoogle Scholar
  10. 10.
    Hashimoto E (1993) Temperature dependence of positron trapping to dislocations in deformed zinc. J Phys Soc Jpn 62(2):552–555CrossRefGoogle Scholar
  11. 11.
    Dryzek E, Sarnek M, Wróbel M (2019) Thermal stability of rolled metastable austenitic stainless steel 1.4307 studied using positron annihilation. Metall Mater Trans A 50(2):581–589CrossRefGoogle Scholar
  12. 12.
    Ohkubo H, Tang Z, Nagai Y, Hasegawa M, Tawara T, Kiritani M (2003) Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe. Mater Sci Eng A350:95–101CrossRefGoogle Scholar
  13. 13.
    Yoshiie T, Sato K, Cao X, Xu Q, Horiki M, Troev TD (2012) Defect structures before steady-state void growth in austenitic stainless steels. J Nucl Mater 429(1–3):185–189CrossRefGoogle Scholar
  14. 14.
    Holzwarth U, Barbieri A, Hansen-Ilzhofer S (2001) Positron annihilation studies on the migration of deformation, induced vacancies in stainless steel AISI 316L. Appl Phys A 73(4):467–475CrossRefGoogle Scholar
  15. 15.
    Dryzek E, Sarnek M, Siemek K (2013) Annealing behaviour of plastically deformed stainless steel 1.4307 studied by positron annihilation methods. Nukleonika 58(1):215–219Google Scholar
  16. 16.
    Hu X, Koyanagi T, Katoh Y, Wirth BD (2017) Positron annihilation spectroscopy investigation of vacancy defects in neutron-irradiated 3C–SiC. Phys Rev B 95(10):104103CrossRefGoogle Scholar
  17. 17.
    Sharma SK, Pujari PK (2017) Role of free volume characteristics of polymer matrix in bulk physicalproperties of polymer nanocomposites: a review of positron annihilation lifetime studies. Prog Polym Sci 75:31–47CrossRefGoogle Scholar
  18. 18.
    Dannefaer S, Kerr D (2004) Positron annihilation investigation of electron irradiation-produced defects in 6H-SiC. Diam Relat Mater 13:157–165CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Neutron and Radioisotope Application Research DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  2. 2.Advanced Materials Research DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  3. 3.Department of Radiological ScienceDaegu Catholic UniversityGyeongsan-siRepublic of Korea

Personalised recommendations