Chemical behavior of uranium contaminated soil solidified by microwave sintering

  • Hexi Tang
  • Yaping Li
  • Wenxiao Huang
  • Shunzhang Chen
  • Fen Luo
  • Xiaoyan Shu
  • Haojie Tan
  • Bingsheng Li
  • Yi Xie
  • Dadong Shao
  • Xirui LuEmail author


For investigating the chemical behavior of uranium-contaminated soil solidified by microwave sintering, the product consistency test method was adopted. The effective factors such as soil species, soil composition, temperature, pH values and their coupling effects have been researched. The maximum leaching rate of uranium was below 1.7 × 10−8 g m−2 day−1 and the cumulative fraction of leached uranium was below 0.0165 after 42 days. The acidic or alkaline leachate and higher temperature would enhance the uranium’s leaching rate, and it was found that the chemical stability of solidified soil is related to the molar ratio of Al2O3/SiO2.

Graphic abstract


Chemical stability Uranium-contaminated soil Molar ratio of Al2O3/SiO2 Microwave-sintering 



This work was funded by the National Natural Science Foundation of China (No. 21677118); the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (No. 18zxhk07); the Open Foundation of Key Laboratory of Radioactive and Rare Scattered Mineral, Ministry of Land and Resources (No. RRSM-KF2019-03); the Longshan academic talent research supporting program of SWUST (No. 18LZX312, No. 18LZX520).


  1. 1.
    Budnitz RJ, Rogner H-H, Shihab-Eldin A (2018) Expansion of nuclear power technology to new countries—SMRs, safety culture issues, and the need for an improved international safety regime. Energy Pol 119:535–544. CrossRefGoogle Scholar
  2. 2.
    Pravalie Remus, Bandoc Georgeta (2018) Nuclear energy: between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications. J Environ Manage 209:81–92. CrossRefPubMedGoogle Scholar
  3. 3.
    Zoriy P, Schläger M, Murtazaev K et al (2018) Monitoring of uranium concentrations in water samples collected near potentially hazardous objects in North-West Tajikistan. J Environ Radioactiv 181:109–117. CrossRefGoogle Scholar
  4. 4.
    Brugge D, Oldmixon B (2005) Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review[J]. Rev Environ Health 20(3):177–194. CrossRefGoogle Scholar
  5. 5.
    Tapia-Rodríguez A, Luna-Velasco A, Field JA et al (2012) Toxicity of uranium to microbial communities in anaerobic biofilms. Water Air Soil Poll 223(7):3859–3868. CrossRefGoogle Scholar
  6. 6.
    Ibrahmi EA, Hamdaoui F, Achhar A et al (2017) Activities of uranium and radium radioisotopes in sediment samples and their impact on soil pollution in lower Moulouya River (Morocco). Environ. Sci 5:1–8. CrossRefGoogle Scholar
  7. 7.
    Liu B, Peng T, Sun H (2017) Leaching behavior of U, Mn, Sr, and Pb from different particle-size fractions of uranium mill tailings. Environ Sci Pollut Res 24(6):1–12. CrossRefGoogle Scholar
  8. 8.
    Huang JW, Blaylock MJ, Kapulnik Y et al (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32(13):2004–2008. CrossRefGoogle Scholar
  9. 9.
    Li G, Hu N, Ding D et al (2011) Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bull Environ Contam Toxicol 86(6):646–652. CrossRefPubMedGoogle Scholar
  10. 10.
    Ren CG, Kong CC, Wang SX et al (2019) Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere 217:773–779. CrossRefPubMedGoogle Scholar
  11. 11.
    Wu Y, Lee CP, Mimura H et al (2018) Stable solidification of silica-based ammonium molybdophosphate by allophane: application to treatment of radioactive cesium in secondary solid wastes generated from fukushima[J]. J Hazard Mater 341:46–54. CrossRefPubMedGoogle Scholar
  12. 12.
    Donald IW (2010) Waste immobilization in glass and ceramic based hosts: radioactive, toxic and hazardous wastes. Wiley, HobokenCrossRefGoogle Scholar
  13. 13.
    Gin S, Abdelouas A, Criscenti LJ et al (2013) An international initiative on long-term behavior of high-level nuclear waste glass. Mater Today 16(6):243–248. CrossRefGoogle Scholar
  14. 14.
    Zhang S, Ding Y, Lu X et al (2016) Rapid and efficient disposal of radioactive contaminated soil using microwave sintering method. Mater Lett 175:165–168. CrossRefGoogle Scholar
  15. 15.
    Zhang S, Shu X, Chen S et al (2017) Rapid immobilization of simulated radioactive soil waste by microwave sintering. J Hazard Mater 337:20–26. CrossRefPubMedGoogle Scholar
  16. 16.
    Chen S, Shu X, Luo F et al (2018) Rapid vitrification of simulated Sr2+ radioactive contaminated soil for nuclear emergencies. J Radioanal Nucl Chem 319:1–7. CrossRefGoogle Scholar
  17. 17.
    Burns WG, Hughes AE, Marples JAC et al (1982) Radiation effects and the leach rates of vitrified radioactive waste. Nature 295(5845):130CrossRefGoogle Scholar
  18. 18.
    Liu YZ, Li BS, Zhang L (2017) High-temperature annealing induced He bubble evolution in low energy He ion implanted 6H-SiC. Chin Phys Lett 34(5):052801–052804. CrossRefGoogle Scholar
  19. 19.
    Liu YZ, Li BS, Lin H et al (2017) Recrytallization phase in He-implanted 6H-SiC. Chin Phys Lett 34(7):076101–076103CrossRefGoogle Scholar
  20. 20.
    Qian G, Lei WS, Niffenegger M et al (2018) On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels. Philos Mag 98(11):959–1004. CrossRefGoogle Scholar
  21. 21.
    Qian G, Cao Y, Niffenegger M et al (2018) Comparison of constraint analyses with global and local approaches under uniaxial and biaxial loadings. Eur J Mech A-Solid 69(6):135–146CrossRefGoogle Scholar
  22. 22.
    Frankel GS, Vienna JD, Lian J et al (2018) A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. npj Mater Degrad 2(1):15. CrossRefGoogle Scholar
  23. 23.
    Vienna JD, Ryan JV, Gin S et al (2013) Current understanding and remaining challenges in modeling long-term degradation of borosilicate nuclear waste glasses. Int J Appl Glass Sci 4(4):283–294. CrossRefGoogle Scholar
  24. 24.
    Debure M, De Windt L, Frugier P et al (2013) HLW glass dissolution in the presence of magnesium carbonate: diffusion cell experiment and coupled modeling of diffusion and geochemical interactions. J Nucl Mater 443(1–3):507–521. CrossRefGoogle Scholar
  25. 25.
    Gin S (2014) Open scientific questions about nuclear glass corrosion. Procedia Mater Sci 7:163–171. CrossRefGoogle Scholar
  26. 26.
    Fournier M, Ull A, Nicoleau E et al (2016) Glass dissolution rate measurement and calculation revisited. J Nucl Mater 476:140–154. CrossRefGoogle Scholar
  27. 27.
    Malkovsky VI, Yudintsev SV, Aleksandrova EV (2018) Influence of Na–Al–Fe–P glass alteration in hot non-saturated vapor on leaching of vitrified radioactive wastes in water. J Nucl Mater. CrossRefGoogle Scholar
  28. 28.
    Seo YC, Lee SH, Lee KS et al (2001) Leaching behavior and characteristics of glass components and surrogate nuclides in radioactive vitrified waste forms. Environ Technol 22(12):1395–1404. CrossRefPubMedGoogle Scholar
  29. 29.
    Cheng Y, Xiao H, Shuguang C et al (2009) Structure and crystallization of B2O3–Al2O3–SiO2 glasses. Phys B 404(8):1230–1234. CrossRefGoogle Scholar
  30. 30.
    Zhang W, Wang J (2017) Leaching performance of uranium from the cement solidified matrices containing spent radioactive organic solvent. Ann Nucl Energy 101:31–35. CrossRefGoogle Scholar
  31. 31.
    SEPA (2011) Standard test method for leachability of low and intermediate level solidified radioactive waste forms. GB 7023–2011Google Scholar
  32. 32.
    Ma L, Brow RK, Schlesinger ME (2017) Dissolution behavior of Na2O–FeO–Fe2O3–P2O5 glasses. J Non-Cryst Solids 463:90–101. CrossRefGoogle Scholar
  33. 33.
    Deng Y, Liao Q, Wang F et al (2018) Synthesis and characterization of cerium containing iron phosphate based glass-ceramics. J Nucl Mater 499:410–418. CrossRefGoogle Scholar
  34. 34.
    Harrison MT, Brown GC (2018) Chemical durability of UK vitrified high level waste in Si-saturated solutions. Mater Lett 221:154–156. CrossRefGoogle Scholar
  35. 35.
    Cheng Y, He P, Dong F et al (2019) Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U (VI) from real uranium mine water. Chem Eng J 367:198–207. CrossRefGoogle Scholar
  36. 36.
    Cailleteau C, Weigel C, Ledieu A et al (2008) On the effect of glass composition in the dissolution of glasses by water. J Non-Cryst Solids 354(2–9):117–123. CrossRefGoogle Scholar
  37. 37.
    Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179:300–308. CrossRefGoogle Scholar
  38. 38.
    Pashalidis I, Buckau G (2007) U(VI) mono-hydroxo humate complexation. J Radioanal Nucl Chem 273(2):315–322. CrossRefGoogle Scholar
  39. 39.
    Cao Z, Balasubramanian K (2009) Theoretical studies of UO2(OH)(H2O)n+, UO2(OH)2(H2O)n, NpO2(OH)(H2O)n, and PuO2(OH)(H2O)n+ (n ≤ 21) complexes in aqueous solution. J chem phys 131(16):164504. CrossRefPubMedGoogle Scholar
  40. 40.
    Iftekhar S, Grins J, Edén M (2010) Composition-property relationships of the La2O3–Al2O3–SiO2 glass system. J Non-Cryst Solids 356(20–22):1043–1048. CrossRefGoogle Scholar
  41. 41.
    Cheng J, Xiao Z, Yang K et al (2013) Viscosity, fragility and structure of Na2O–CaO–Al2O3–SiO2 glasses of increasing Al/Si ratio. Ceram Int 39(4):4055–4062. CrossRefGoogle Scholar
  42. 42.
    Snellings R (2015) Surface chemistry of calcium aluminosilicate glasses. J Am Ceram Soc 98(1):303–314. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Environment-Friendly Energy MaterialsSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.Key Laboratory of Radioactive and Rare Scattered MineralsMinistry of Land and ResourcesShaoguanPeople’s Republic of China
  3. 3.Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  4. 4.Institute of Plasma PhysicsChinese Academy of SciencesHefeiPeople’s Republic of China
  5. 5.Nanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations