Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 3, pp 1287–1297 | Cite as

A study of dose verification and comparison for complex irradiation field with high dose rate radiation by using a 3D N-isopropylacrylamide gel dosimeter

  • Chun-Hsu Yao
  • Tung-Hao Chang
  • Chun-Ting Su
  • Yuan-Chun Lai
  • Shih-Ming Hsu
  • Chin-Hsing ChenEmail author
  • Yuan-Jen ChangEmail author


This study aimed to investigate dosimeter characteristics by using a photon beam with and without the flattening filter of intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) by using a 3D N-isopropylacrylamide (NIPAM) polymer gel. A self-developed optical computed tomography scheme was used to measure the dose distribution. Gamma evaluation was performed between the dose distribution calculated by a treatment planning system and the measured dose distribution by using the criteria of 3% dose difference and 3 mm distance to agreement. Under these criteria, the passing rates showed no significant difference between IMRT and VMAT irradiation with and without the flattening filter. All these results revealed that the NIPAM gel dosimeter was for high-dose-rate radiation and clinical-pretreatment verifications.


NIPAM gel dosimeter Optical CT Intensity-modulated radiation therapy (IMRT) Volumetric modulated arc therapy (VMAT) Flattening filter-free beam Gamma evaluation 



This study was supported by the Ministry of Science and Technology, Executive Yuan, Taipei, Taiwan (Grant No. MOST 106-2314-B-035-001, website:, China Medical University (Grant No. CMU107-S-12 and CMU106-S-04, website:, and Changhua Christian Hospital (Grant No. CTU106-CH-006, website:


  1. 1.
    Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence based clinical guidelines. Cancer Interdiscip Int J Am Cancer Soc 104(6):1129–1137Google Scholar
  2. 2.
    Palma D, Vollans E, James K, Nakano S, Moiseenko V, Shaffer R, McKenzie M, Morris J, Otto K (2008) Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy. Int J Radiat Oncol* Biol* Phys 72(4):996–1001CrossRefGoogle Scholar
  3. 3.
    Mock U, Georg D, Bogner J, Auberger T, Pötter R (2004) Treatment planning comparison of conventional, 3D conformal, and intensity-modulated photon (IMRT) and proton therapy for paranasal sinus carcinoma. Int J Radiat Oncol* Biol* Phys 58(1):147–154CrossRefGoogle Scholar
  4. 4.
    Wolff D, Stieler F, Welzel G, Lorenz F, Abo-Madyan Y, Mai S, Herskind C, Polednik M, Steil V, Wenz F, Lohr F (2009) Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol 93(2):226–233CrossRefGoogle Scholar
  5. 5.
    Lee N, Puri DR, Blanco AI, Chao KC (2007) Intensity-modulated radiation therapy in head and neck cancers: an update. Head Neck J Sci Spec Head Neck 29(4):387–400CrossRefGoogle Scholar
  6. 6.
    Teh BS, Woo SY, Butler EB (1999) Intensity modulated radiation therapy (IMRT): a new promising technology in radiation oncology. Oncologist 4(6):433–442PubMedGoogle Scholar
  7. 7.
    Ahmed M, Hansen VN, Harrington KJ, Nutting CM (2009) Reducing the risk of xerostomia and mandibular osteoradionecrosis: the potential benefits of intensity modulated radiotherapy in advanced oral cavity carcinoma. Med Dosim 34(3):217–224CrossRefGoogle Scholar
  8. 8.
    Pasler M, Wirtz H, Lutterbach J (2011) Impact of gantry rotation time on plan quality and dosimetric verification–volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT). Strahlenther Onkol 187(12):812–819CrossRefGoogle Scholar
  9. 9.
    Malicki J (2012) The importance of accurate treatment planning, delivery, and dose verification. Rep Pract Oncol Radiother 17(2):63CrossRefGoogle Scholar
  10. 10.
    Ceberg S, Karlsson A, Gustavsson H, Wittgren L, Bäck SÅJ (2008) Verification of dynamic radiotherapy: the potential for 3D dosimetry under respiratory-like motion using polymer gel. Phys Med Biol 53(20):N387CrossRefGoogle Scholar
  11. 11.
    Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ (2010) Polymer gel dosimetry. Phys Med Biol 55(5):R1CrossRefGoogle Scholar
  12. 12.
    Schreiner LJ (2004) Review of Fricke gel dosimeters. In: Journal of Physics: Conference Series, vol 3(1). IOP Publishing, p 9Google Scholar
  13. 13.
    Maryanski MJ, Zastavker YZ, Gore JC (1996) Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: II. Optical properties of the BANG polymer gel. Phys Med Biol 41(12):2705CrossRefGoogle Scholar
  14. 14.
    Fong PM, Keil DC, Does MD, Gore JC (2001) Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol 46(12):3105CrossRefGoogle Scholar
  15. 15.
    Senden RJ, De Jean P, McAuley KB, Schreiner LJ (2006) Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose–response using different monomers. Phys Med Biol 51(14):3301CrossRefGoogle Scholar
  16. 16.
    Hsieh B, Chang Y, Han R, Wu J, Hsieh L, Chang C (2011) A study on dose response of NIPAM-based dosimeter used in radiotherapy. J Radioanal Nucl Chem 290(1):141–148CrossRefGoogle Scholar
  17. 17.
    Chang YJ, Hsieh BT, Liang JA (2011) A systematic approach to determine optimal composition of gel used in radiation therapy. Nucl Instrum Methods Phys Res Sect A 652(1):783–785CrossRefGoogle Scholar
  18. 18.
    Chang YJ, Hsieh BT (2012) Effect of composition interactions on the dose response of an N-isopropylacrylamide gel dosimeter. PLoS ONE 7(10):e44905CrossRefGoogle Scholar
  19. 19.
    De Deene Y (2004) Essential characteristics of polymer gel dosimeters. In: Journal of Physics: Conference Series, vol 3(1). IOP Publishing, p 34Google Scholar
  20. 20.
    Hsieh BT, Wu J, Chang YJ (2013) Verification on the dose profile variation of a 3-D—NIPAM polymer gel dosimeter. IEEE Trans Nucl Sci 60(2):560–565CrossRefGoogle Scholar
  21. 21.
    Yao CH, Hsu WT, Hsu SM, Ma PYL, Hsieh BT, Chang YJ (2013) NIPAM polymer gel dosimetry for IMRT four-field box irradiation using optical-CT scanner. In: Journal of Physics: Conference Series, vol 444(1). IOP Publishing, p 012030Google Scholar
  22. 22.
    Yao CH, Hsu WT, Lee JJ, Hsu SM, Ma PYL, Hsieh BT, Chang YJ (2014) A characteristic study on NIPAM gel dosimetry using optical-CT scanner. J Med Biol Eng 34(4):327–332CrossRefGoogle Scholar
  23. 23.
    Chang YJ, Chen CH, Hsieh BT (2014) Characterization of long-term dose stability of N-isopropylacrylamide polymer gel dosimetry. J Radioanal Nucl Chem 301(3):765–780CrossRefGoogle Scholar
  24. 24.
    Nederlandse Commissie Voor Stralingsdosimetrie (2013) Code of practice for the quality assurance and control for intensity modulated radiotherapy. Report 22 of the Netherlands Commission on Radiation DosimetryGoogle Scholar
  25. 25.
    Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25(5):656–661CrossRefGoogle Scholar
  26. 26.
    Low DA, Dempsey JF (2003) Evaluation of the gamma dose distribution comparison method. Med Phys 30(9):2455–2464CrossRefGoogle Scholar
  27. 27.
    Georg D, Kragl G, Af Wetterstedt S, McCavana P, McClean B, Knöös T (2010) Photon beam quality variations of a flattening filter free linear accelerator. Med Phys 37(1):49–53CrossRefGoogle Scholar
  28. 28.
    Stathakis S, Esquivel C, Gutierrez A, Buckey CR, Papanikolaou N (2009) Treatment planning and delivery of IMRT using 6 and 18 MV photon beams without flattening filter. Appl Radiat Isot 67(9):1629–1637CrossRefGoogle Scholar
  29. 29.
    Kry SF, Vassiliev ON, Mohan R (2010) Out-of-field photon dose following removal of the flattening filter from a medical accelerator. Phys Med Biol 55(8):2155CrossRefGoogle Scholar
  30. 30.
    Yao CH, Chang TH, Lin CC, Lai YC, Chen CH, Chang YJ (2019) Three-dimensional dose comparison of flattening filter (FF) and flattening filter-free (FFF) radiation therapy by using NIPAM gel dosimetry. PLoS ONE 14(2):e0212546CrossRefGoogle Scholar
  31. 31.
    Chang YJ (2015) Use of a speckle reduction technique to improve the reconstruction image quality of CCD-based optical computed tomography scanner. Nucl Instrum Methods Phys Res Sect A 784:585–589CrossRefGoogle Scholar
  32. 32.
    Vandecasteele J, De Deene Y (2013) Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification. Phys Med Biol 58(18):6241CrossRefGoogle Scholar
  33. 33.
    Massillon-Jl G, Minniti R, Soares CG, Maryanski MJ, Robertson S (2010) Characteristics of a new polymer gel for high-dose gradient dosimetry using a micro optical CT scanner. Appl Radiat Isot 68(1):144–154CrossRefGoogle Scholar
  34. 34.
    Waldenberg C (2015) Characterization and evaluation of a NIPAM polymer gel MRI dosimeter system. M.Sc. thesis, Department of Radiation Physics, University of Gothenburg, GothenburgGoogle Scholar
  35. 35.
    Sathiyaraj P, Samuel JJ (2018) Dose rate and energy dependence study of methacrylic acid gelatin tetrakis (hydroxymethyl) phosphonium chloride gel with flattened and unflattened photon beams. J Cancer Res Ther 14(2):287PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Biomaterials Translational Research CenterChina Medical University HospitalTaichung CityTaiwan, ROC
  2. 2.Department of Biomedical Imaging and Radiological ScienceChina Medical UniversityTaichung CityTaiwan, ROC
  3. 3.School of Chinese MedicineChina Medical UniversityTaichung CityTaiwan, ROC
  4. 4.Department of Biomedical InformaticsAsia UniversityTaichung CityTaiwan, ROC
  5. 5.Department of Radiation OncologyChanghua Christian HospitalChanghua CityTaiwan, ROC
  6. 6.Department of Biomedical Imaging and Radiological ScienceNational Yang-Ming UniversityTaipei CityTaiwan, ROC
  7. 7.Department of Management Information SystemsCentral Taiwan University of Science and TechnologyTaichung CityTaiwan, ROC
  8. 8.Department of Aerospace and Systems EngineeringFeng-Chia UniversityTaichung CityTaiwan, ROC

Personalised recommendations