Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 1139–1149 | Cite as

Microbial clean-up of uranium in the presence of molybdenum using pretreated Acidithiobacillus ferrooxidans

  • Rouha Kasra-Kermanshahi
  • Marziyeh Bahrami-Bavani
  • Parisa Tajer-Mohammad-GhazviniEmail author
Article
  • 10 Downloads

Abstract

The present study is an attempt to optimize the uranium biosorption by pretreated Acidithiobacillus ferrooxidans strain ZT-94. The influences of pH, contact time, biomass dose, uranium concentration and temperature were investigated. In optimal conditions, uranium biosorption capacity was 204.44 mg/g dry weight at pH 4 during 60 min. The biosorbent was characterized by SEM microscope. The equilibrium data was fitted well by the Freundlich model with R2 = 0.8978. In the presence of molybdenum, pretreated biosorbent is tendency to adsorption of uranium. Finally, this study suggests that new biosorbent can be a potential candidate for uranium bioremediation in dual contamination with molybdenum.

Keywords

Bacteria Biosorption Bioremediation Molybdenum Uranium 

Notes

Supplementary material

10967_2019_6819_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. 1.
    Song S, Zhang S, Huang S, Zhang R, Yin L, Hu Y, Wen T, Zhuang L, Hu B, Wang X (2019) A novel multi-shelled Fe3O4@MnOx hollow microspheres for immobilizing U(VI) and Eu(III). Chem Eng J 355:697–709Google Scholar
  2. 2.
    Ding H, Zhang X, Yang H, Zhang Y, Luo X (2019) Biosorption of U(VI) by active and inactive Aspergillus niger: equilibrium, kinetic, thermodynamic and mechanistic analyses. J Radioanal Nucl Chem 319(3):1261–1275Google Scholar
  3. 3.
    Liu L, Liu J, Liu X, Dai C, Zhang Z, Song W, Chu Y (2019) Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. J Environ Radioact 203:117–124PubMedGoogle Scholar
  4. 4.
    Dreher KT (1980) Removal of uranium and molybdenum from uranium mine wastewaters by algae. New Mexico Institute of Mining and Technology, MexicoGoogle Scholar
  5. 5.
    Morrison SJ, Spangler RR (1992) Extraction of uranium and molybdenum from aqueous solutions: a survey of industrial materials for use in chemical barriers for uranium mill tailings remediation. Environ Sci Technol 26(10):1922–1931Google Scholar
  6. 6.
    Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide–microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol 16(3):254–260PubMedGoogle Scholar
  7. 7.
    Jan RJ, Montgomery AH (1983) Process for the separation and recovery of molybdenum and uranium from leach solution using ion exchange. United States PatentGoogle Scholar
  8. 8.
    Bağda E, Sarı A, Tuzen M (2018) Effective uranium biosorption by macrofungus (Russula sanguinea) from aqueous solution: equilibrium, thermodynamic and kinetic studies. J Radioanal Nucl Chem 317(3):1387–1397Google Scholar
  9. 9.
    Soliman AM, Murad AA, El Sheikh ES, Massad AM, Ali IM (2017) Selective removal of uranium from wastewater using sludge collected from refinery wastewater treatment: equilibrium, thermodynamic and kinetics studies. J Water Process Eng 19:267–276Google Scholar
  10. 10.
    Brierley JA, Brierley CL (1980) Biological methods to remove selected inorganic pollutants from uranium mine wastewater. In: Presented at biogeochemistry of ancient and modern environments, Berlin, HeidelbergGoogle Scholar
  11. 11.
    Tišáková L, Pipíška M, Godány A, Horník M, Vidová B, Augustín J (2013) Bioaccumulation of 137Cs and 60 Co by bacteria isolated from spent nuclear fuel pools. J Radioanal Nucl Chem 295(1):737–748Google Scholar
  12. 12.
    Liu L, Zhang Z, Song W, Chu Y (2018) Removal of radionuclide U(VI) from aqueous solution by the resistant fungus Absidia corymbifera. J Radioanal Nucl Chem 318(2):1151–1160Google Scholar
  13. 13.
    Wei Y, Chen Z, Song H, Zhang J, Lin Z, Dang Z, Deng H (2019) The immobilization mechanism of U(VI) induced by Bacillus thuringiensis 016 and the effects of coexisting ions. Biochem Eng J 144:57–63Google Scholar
  14. 14.
    Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291PubMedGoogle Scholar
  15. 15.
    Vieira RH, Volesky B (2010) Biosorption: A solution to pollution? Int Microbiol 3(1):17–24Google Scholar
  16. 16.
    Volesky B, Holan Z (1995) Biosorption of heavy metals. Biotechnol Prog 11(3):235–250PubMedGoogle Scholar
  17. 17.
    Volesky B (1994) Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev 14(4):291–302PubMedGoogle Scholar
  18. 18.
    Volesky B (2003) Sorption and biosorption, vol 4. BV Sorbex, MonteralGoogle Scholar
  19. 19.
    Volesky B (2007) Biosorption and me. Water Res 41(18):4017–4029PubMedGoogle Scholar
  20. 20.
    Tabak HH, Lens P, van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides–1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Biotechnol 4(3):115–156Google Scholar
  21. 21.
    Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750Google Scholar
  22. 22.
    Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149(8):1959–1970PubMedGoogle Scholar
  23. 23.
    Kumar R, Singh S, Singh OV (2007) Bioremediation of radionuclides: emerging technologies. Omics J Integr Biol 11(3):295–304Google Scholar
  24. 24.
    Yan L, Yin H, Zhang S, Leng F, Nan W, Li H (2010) Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3. J Hazard Mater 178(1):209–217.  https://doi.org/10.1016/j.jhazmat.2010.01.065 CrossRefPubMedGoogle Scholar
  25. 25.
    Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS (2008) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genom 9:597.  https://doi.org/10.1186/1471-2164-9-597 CrossRefGoogle Scholar
  26. 26.
    Ruiz-Manríquez A, Magaña PI, López V, Guzmán R (1998) Biosorption of Cu by Thiobacillus ferrooxidans. Bioprocess Eng 18(2):113–118.  https://doi.org/10.1007/pl00008978 CrossRefGoogle Scholar
  27. 27.
    Merroun ML, Geipel G, Nicolai R, Heise K-H, Selenska-Pobell S (2003) Complexation of uranium(VI) by three eco-types of Acidithiobacillus ferrooxidans studied using time-resolved laser-induced fluorescence spectroscopy and infrared spectroscopy. Biometals 16(2):331–339PubMedGoogle Scholar
  28. 28.
    Merroun ML, Selenska-Pobell S (2001) Interactions of three eco-types of Acidithiobacillus ferrooxidans with U(VI). Biometals 14(2):171–179.  https://doi.org/10.1023/a:1016658209397 CrossRefPubMedGoogle Scholar
  29. 29.
    Selatnia A, Bakhti M, Madani A, Kertous L, Mansouri Y (2004) Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 75(1):11–24Google Scholar
  30. 30.
    Göksungur Y, Üren S, Güvenç U (2005) Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour Technol 96(1):103–109PubMedGoogle Scholar
  31. 31.
    Bai RS, Abraham TE (2002) Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Res 36(5):1224–1236PubMedGoogle Scholar
  32. 32.
    Tsuruta T (2006) Removal and recovery of uranium using microorganisms isolated from Japanese uranium deposits. J Nucl Sci Technol 43(8):896–902Google Scholar
  33. 33.
    Aytas T, Alkim G (2011) Biosorption of uranium(VI) by bi-functionalized low cost biocomposite adsorbent. Desalination 280(1):354–362Google Scholar
  34. 34.
    Kotrba P (2011) Microbial biosorption of metals—general introduction. In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer, Dordrecht, pp 1–6.  https://doi.org/10.1007/978-94-007-0443-5_1 CrossRefGoogle Scholar
  35. 35.
    Chiu Z, James E (1976) Biosorption isotherm for uranium recovery. J Environ Eng Div Am Soc Civil Eng (United States) 102(5):1109–1111Google Scholar
  36. 36.
    Tsuruta T (2007) Removal and recovery of uranium using microorganisms isolated from North American uranium deposits. Am J Environ Sci 3(2):60–66Google Scholar
  37. 37.
    Tsezos M, McCready R, Bell J (1989) The continuous recovery of uranium from biologically leached solutions using immobilized biomass. Biotechnol Bioeng 34(1):10–17PubMedGoogle Scholar
  38. 38.
    Floreancig A, Cuer J-P (1982) Separation of uranium and molybdenum using a solvent. United States Patent 4363788Google Scholar
  39. 39.
    Atlas RM (2005) Handbook of media for environmental microbiology, vol 1. CRC Press, Boca RatonGoogle Scholar
  40. 40.
    Khani MH (2011) Uranium biosorption by Padina sp. algae biomass: kinetics and thermodynamics. Environ Sci Pollut Res 18(9):1593–1605Google Scholar
  41. 41.
    Kafshgari F, Keshtkar AR, Mousavian MA (2013) Study of Mo (VI) removal from aqueous solution: application of different mathematical models to continuous biosorption data. Iran J Environ Health Sci Eng 10(1):1–14Google Scholar
  42. 42.
    Li X, Ding C, Liao J, Lan T, Li F, Zhang D, Yang J, Yang Y, Luo S, Tang J (2014) Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism. J Environ Radioact 135:6–12PubMedGoogle Scholar
  43. 43.
    Tajer-Mohammad-Ghazvini P, Kasra-Kermanshahi R, Nozad-Golikand A, Sadeghizadeh M, Ghorbanzadeh-Mashkani S, Dabbagh R (2016) Cobalt separation by Alphaproteobacterium MTB-KTN90: magnetotactic bacteria in bioremediation. Bioprocess Biosyst Eng 39(12):1899–1911PubMedGoogle Scholar
  44. 44.
    Mann H (1990) Removal and recovery of heavy metals by biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 93–137Google Scholar
  45. 45.
    Piroeva I, Atanassova-Vladimirova S, Dimowa L, Sbirkova H, Radoslavov G, Hristov P, Shivachev BL (2013) A simple and rapid scanning electron microscope preparative technique for observation of biological samples: application on bacteria and DNA samples. Bul Chem Commun 45:510–515Google Scholar
  46. 46.
    Yi Z-j, Yao J (2012) Kinetic and equilibrium study of uranium(VI) adsorption by Bacillus licheniformis. J Radioanal Nucl Chem 293(3):907–914Google Scholar
  47. 47.
    Wang J-S, Hu X-J, Wang J, Bao Z-L, Xie S-B, Yang J-H (2010) The tolerance of Rhizopus arrihizus to U(VI) and biosorption behavior of U(VI) onto R. arrihizus. Biochem Eng J 51(1):19–23Google Scholar
  48. 48.
    Bhainsa KC, D’souza SF (1999) Biosorption of uranium(VI) by Aspergillus fumigatus. Biotechnol Tech 13(10):695–699Google Scholar
  49. 49.
    Mashkani SG, Ghazvini PTM, Aligol DA (2009) Uptake of Re(VII) from aqueous solutions by Bacillus sp GT-83-23. Biores Technol 100(2):603–608Google Scholar
  50. 50.
    Pons MP, Fuste MC (1993) Uranium uptake by immobilized cells of Pseudomonas strain EPS 5028. Appl Microbiol Biotechnol 39(4):661–665Google Scholar
  51. 51.
    Tsezos M (1984) Recovery of uranium from biological adsorbents—desorption equilibrium. Biotechnol Bioeng 26(8):973–981PubMedGoogle Scholar
  52. 52.
    Pang C, Liu Y-H, Cao X-H, Li M, Huang G-L, Hua R, Wang C-X, Liu Y-T, An X-F (2011) Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. Chem Eng J 170(1):1–6Google Scholar
  53. 53.
    Guibal E, Milot C, Tobin JM (1998) Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Ind Eng Chem Res 37(4):1454–1463Google Scholar
  54. 54.
    Wang M-Y, Jiang C-J, Wang X-W, Xian P-F, Wang H-G, Yang Y (2017) Existing form of Mo(VI) in acidic sulfate solution. Rare Met 36(7):612–616Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Rouha Kasra-Kermanshahi
    • 1
  • Marziyeh Bahrami-Bavani
    • 1
  • Parisa Tajer-Mohammad-Ghazvini
    • 2
    Email author
  1. 1.Department of Microbiology, Faculty of Biological ScienceAlzahra UniversityTehranIran
  2. 2.Materials and Nuclear Fuel Research SchoolNuclear Science and Technology Research InstituteTehranIran

Personalised recommendations