Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 1127–1131 | Cite as

Assessment of the contents of essential and potentially toxic elements in Pistacia terebinthus L. and Pistacia lentiscus L. by INAA technique

  • Nadjia Hamlat
  • Adel Benarfa
  • Brahim Beladel
  • Samir Begaa
  • Mohammed MessaoudiEmail author
  • Aicha Hassani
Article

Abstract

Pistacia terebinthus L. and Pistacia lentiscus L. leaves are widely used in Algerian folk medicine. For the first time, P. terebinthus and P. lentiscus leaves, were subjected to determine their essential and toxic elements using instrumental neutron activation analysis (INAA). P. terebinthus and P. lentiscus leaves were collected from two different locations in Algeria and exposed to INAA analysis. The results show that the mass fractions of the sixteen trace elements studied are within the tolerance limits imposed by the World Health Organization. Hence these results could therefore be used to provide scientific basis for an optimum usage and enriches the database of medicinal herbs.

Keywords

Medicinal plants Pistacia terebinthus L. Pistacia lentiscus L. INAA method Toxic elements Human health 

Notes

Acknowledgements

This work has been carried out and supported by Algerian Ministry of Higher Education and Scientific Research, the authors thank all the members of the Department of Neutron Activation Analysis (Es-Salam Nuclear Research Centre of Birine, Djelfa) for the technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Belhachat D, Mekimene L, Belhachat M et al (2018) Application of response surface methodology to optimize the extraction of essential oil from ripe berries of Pistacia lentiscus using ultrasonic pretreatment. J Appl Res Med Aromat Plants 9:132–140.  https://doi.org/10.1016/j.jarmap.2018.04.003 CrossRefGoogle Scholar
  2. 2.
    Ben Ahmed Z, Yousfi M, Viaene J et al (2016) Determination of optimal extraction conditions for phenolic compounds from Pistacia atlantica leaves using the response surface methodology. Anal Methods 8:6107–6114.  https://doi.org/10.1039/C6AY01739H CrossRefGoogle Scholar
  3. 3.
    Bozorgi M, Memariani Z, Mobli M et al (2013) A review of their traditional uses, phytochemistry, and pharmacology. Sci World J 2013:33.  https://doi.org/10.1155/2013/219815 CrossRefGoogle Scholar
  4. 4.
    Durmaz G, Gökmen V (2011) Changes in oxidative stability, antioxidant capacity and phytochemical composition of Pistacia terebinthus oil with roasting. Food Chem 128:410–414.  https://doi.org/10.1016/j.foodchem.2011.03.044 CrossRefPubMedGoogle Scholar
  5. 5.
    Longo L, Scardino A, Vasapollo G (2007) Identification and quantification of anthocyanins in the berries of Pistacia lentiscus L., Phillyrea latifolia L. and Rubia peregrina L. Innov Food Sci Emerg Technol 8:360–364.  https://doi.org/10.1016/j.ifset.2007.03.010 CrossRefGoogle Scholar
  6. 6.
    Alsabbagh A, Khalayleh L, Dbissi M, Landsberger S (2017) An assessment study in the determination of chemical elements in sediments and fish in the Zarka River and King Talal Dam, Jordan. J Radioanal Nucl Chem 314:141–147.  https://doi.org/10.1007/s10967-017-5355-2 CrossRefGoogle Scholar
  7. 7.
    Orvini E, Speziali M, Herborg C, Salvini A (2005) Trace element characterization by INAA of three sediments to be certified as standard reference materials. Microchem J 79:239–242CrossRefGoogle Scholar
  8. 8.
    El-Sweify FH, El-Amir MA, Mostafa M et al (2016) Simultaneous multi-element determination in different seed samples of Dodonaea viscosa hopseed using instrumental neutron activation analysis. Radiochim Acta 104:211–220CrossRefGoogle Scholar
  9. 9.
    Begaa S, Messaoudi M (2019) Toxicological aspect of some selected medicinal plant samples collected from Djelfa, Algeria Region. Biol Trace Elem Res 187:301–306CrossRefGoogle Scholar
  10. 10.
    Benyoussef E-H, Charchari S, Nacer-Bey N et al (2005) The essential oil of Pistacia lentiscus L. from Algeria. J Essent Oil Res 17:642–644CrossRefGoogle Scholar
  11. 11.
    Gourine N, Yousfi M, Bombarda I et al (2010) Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Ind Crops Prod 31:203–208CrossRefGoogle Scholar
  12. 12.
    Ben Ahmed Z, Yousfi M, Viaene J et al (2016) Antioxidant activities of Pistacia atlantica extracts modeled as a function of chromatographic fingerprints in order to identify antioxidant markers. Microchem J 128:208–217.  https://doi.org/10.1016/j.microc.2016.04.023 CrossRefGoogle Scholar
  13. 13.
    Garg AN, Gajbhiye PT, Choudhury RP (2017) INAA of essential micronutrients in Terminalia arjuna bark powder: a versatile heart tonic. J Radioanal Nucl Chem 314:1539–1545.  https://doi.org/10.1007/s10967-017-5564-8 CrossRefGoogle Scholar
  14. 14.
    Begaa S, Messaoudi M (2018) Thermal neutron activation analysis of some toxic and trace chemical element contents in Mentha pulegium L. Radiochim Acta.  https://doi.org/10.1515/ract-2018-2942 CrossRefGoogle Scholar
  15. 15.
    Wu D, Landsberger S, Larson SM (1997) Determination of the elemental distribution in cigarette components and smoke by instrumental neutron activation analysis. J Radioanal Nucl Chem 217:77–82CrossRefGoogle Scholar
  16. 16.
    No A, Committee AM (2016) z-Scores and other scores in chemical proficiency testing—their meanings, and some common misconceptions. Anal Methods 8:5553–5555CrossRefGoogle Scholar
  17. 17.
    Rahman M, Islam MA, Khan RA (2018) Characterization of chemical elements in common spices of Bangladesh for dietary intake and possible health risk assessment by INAA and AAS techniques. J Radioanal Nucl Chem 318:1347–1357CrossRefGoogle Scholar
  18. 18.
    Beto JA (2015) The role of calcium in human aging. Clin Nutr Res 4:1–8CrossRefGoogle Scholar
  19. 19.
    Messaoudi M, Begaa S (2018) Application of INAA technique for analysis of essential trace and toxic elements in medicinal seeds of Carum carvi L. & Foeniculum vul-gare Mill. used in Algeria. J Appl Res Med Aromat Plants 9:39–45Google Scholar
  20. 20.
    Garg AN, Paul Choudhury R, Acharya R, Reddy AVR (2012) Determination of minor, trace and toxic elements in chewing tobacco products by instrumental neutron activation analysis and identification of glutamic acid. J Radioanal Nucl Chem 294:197–202.  https://doi.org/10.1007/s10967-012-1845-4 CrossRefGoogle Scholar
  21. 21.
    Arzani A, Zeinali H, Razmjo K (2007) Iron and magnesium concentrations of mint accessions (Mentha spp.). Plant Physiol Biochem 45:323–329CrossRefGoogle Scholar
  22. 22.
    Zaidi JH, Fatima I, Qureshi IH, Subhani MS (2004) Trace elements evaluation of some medicinal herbs by instrumental neutron activation analysis. Radiochim Acta 92:363–368Google Scholar
  23. 23.
    Mertz W (1993) Chromium in human nutrition: a review. J Nutr 123:626–633CrossRefGoogle Scholar
  24. 24.
    Organization WHO (1996) Trace elements in human nutrition and health. WHO, GenevaGoogle Scholar
  25. 25.
    Abernathy CO, Thomas DJ, Calderon RL (2003) Health effects and risk assessment of arsenic. J Nutr 133:1536S–1538SCrossRefGoogle Scholar
  26. 26.
    Mertz W (2012) Trace elements in human and animal nutrition. Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Joint WHO/FAO (1999). Expert committee on food additives. Summary and conclusions. In: 53rd meeting, RomeGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Ecole Normale Supérieure (ENS)AlgerAlgeria
  2. 2.Laboratory of Fundamental SciencesUniversity Amar Télidji of LaghouatLaghouatAlgeria
  3. 3.Department of Physics, Faculty of Science and TechnicsUniversity of DjelfaDjelfaAlgeria
  4. 4.Nuclear Research Centre of BirineDjelfaAlgeria

Personalised recommendations