Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 869–877 | Cite as

Gamma-ray irradiation-induced variations in structural and electrical properties of PVP neutral polymer in water

  • Amal BelaidiEmail author
  • Moez Guettari
  • Tahar Tajouri
Article
  • 19 Downloads

Abstract

The purpose of this study was to improve polyvinylpyrrolidone (PVP) electrical conductivity by means of gamma irradiation for a dosimetric application. PVP was irradiated with various doses of γ radiation and dissolved in water to investigate its structural, optical, and electrical characteristics. Electron paramagnetic resonance measurements (EPR) depicted the presence of free radical (H·). FTIR and UV–visible spectra revealed a structural deformation in the post-irradiated polymer (PVP*) through chain scission. In addition, the gap and Urbach energy were investigated and discussed. The obtained results of electrical conductivity show an exponential behavior indicating a character of a pseudo-polyelctrolyte. The pH measurements revealed an acidic character of PVP*.

Keywords

Polyvinylpyrrolidone Gamma irradiation Electrical conductivity 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the Tunisian Ministry of Education, Research, and Technology. Express sincere thanks to Dr Faouzi Hosni, a head laboratory in CNSTN, for polymer irradiation and EPR measurements. Also, to Dr Khaled Farah for giving us the opportunity to work on the absorbance UV–Visible.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Madera-Santana TJ, Maléndrez R, Gorrzalez-Garcia G, Quintana-Qwen P, Pillai SD (2016) Effect of gamma irradiation on physicochemical properties of commercial poly(lactic acid) clamshell for food packaging. Radiat Phys Chem 123:6–13Google Scholar
  2. 2.
    Shamommadi F, Almasi A (2016) Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohyd Polym 149:8–19Google Scholar
  3. 3.
    Zembouai I, Kaci M, Bruzaud S, Dumazet L, Bourmaud A, Mahlous M, Lopez-Cuesta JM, Grohens Y (2016) Gamma irradiation effects on morphology and properties of PHBV/PLA blends in presence of compatibilizer and Cloisite 30B. Polym Test 49:29–37Google Scholar
  4. 4.
    Zhu F (2016) Impact of γ-irradiation on structure, physicochemical properties, and applications of starch. Food Hydrocolloid 52:201–212Google Scholar
  5. 5.
    Khan AA, Ghani A, Masodi FA, Amin F, Wani IA, Khanday FA, Gari A (2016) Structural, thermal, functional, antioxidant and antimicrobial properties of β-D-glucan extracted from baker’s yeast (Saccharomyces cereviseae)—effect of γ-irradiation. Carbohyd Polym 140:442–450Google Scholar
  6. 6.
    Fen G, Liu J, Geng J, Liu B (2015) Conjugated polymer microparticles for selective cancer cell image-guided photothermal therapy. J Mater Chem B 3:1135–1141Google Scholar
  7. 7.
    Miksova R, Mackova A, Malinsky P, Slepicka P, Svorcik V (2015) A study of the degradation of polymers irradiated by Cnþ and Onþ 9.6 MeV heavy ions. Polym Degrad Stabil 122:1110–1121Google Scholar
  8. 8.
    Camargo AC, Regitano-d’Arce MA, Gallo CR, Shahidi F (2015) Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin. J Funct Food 12:129–143Google Scholar
  9. 9.
    Jahan MS, Walters BM, Riachinarab T, Gnawali R, Adhikari D, Trieu H (2016) A comparative study of radiation effects in medical-grade polymers: UHMWPE, PCU and PEEK. Radiat Phys Chem 118:96–101Google Scholar
  10. 10.
    Malekie S, Ziaie F (2015) Study on a novel dosimeter based on polyethylene–carbon nanotube composite. Nucl Instrum Meth A 791:1–5Google Scholar
  11. 11.
    Saada SA, Mona HI, Aya MN, Kandilb SA (2018) Modifications in the optical and thermal properties of a CR-39 polymeric detector induced by high doses of γ-radiation. Radiat Phys Chem 145:122–129Google Scholar
  12. 12.
    Raghuvanshi SK, Ahmad B, Siddhartha Srivastava A K, Krishna JBM, Wahab MA (2012) Effect of gamma irradiation on the optical properties of UHMWPE (ultrahigh-molecular-weight-polyethylene) polymer. Nucl Instrum Methods. 271:44–47Google Scholar
  13. 13.
    Singh S, Prasher S (2005) The optical, chemical and spectral response of gamma-irradiated Lexan polymeric track recorder. Radiat Meas 40:50–54Google Scholar
  14. 14.
    Hema M, Tamilselvi P, Pandaram P (2017) Conductivity enhancement in SiO2 doped PVA:PVDF nanocomposite polymer electrolyte by gamma ray irradiation. Nucl Instrum Meth B 403:13–20Google Scholar
  15. 15.
    Feket T, Borsa J, Takacs E, Wojnarovits L (2016) Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. Radiat Phys Chem 118:114–119Google Scholar
  16. 16.
    Masrat R, Maswal M, Chat OA, Rather GM, Dar AA (2016) A rheological investigation of sol–gel transition of hydroxypropyl cellulose with nonionic surfactant sorbitan monopalmitate: modulation of gel strength by UV irradiation. Colloid Surface A 489:113–121Google Scholar
  17. 17.
    Chapiro A, Legris C (1985) Formation de gels de poly(n-vinylpyrrolidone) par l’action des rayons gamma sur des solutions aqueuses de poly(n-vinylpyrrolidone). Eur Poly J 21:49–53Google Scholar
  18. 18.
    Lina R, Xiaofei W, Shan L, Jiaolong L, Xudong Z, Lin Z, Feng G, Guanghong Z (2018) Effect of gamma irradiation on structure, physicochemical and immunomodulatory properties of Astragalus polysaccharides. Int J Bio Macromol 120:641–649Google Scholar
  19. 19.
    Abdul-Kader AM, Zaki MF, Radwan RM, Abuhadi Nouf (2018) Influence of gamma irradiation on physical and chemical properties of Makrofol (NTD) material. Radiat Phys Chem 151:12–18Google Scholar
  20. 20.
    Lobko A, Kazhuro V, Valynets N, Bellucci S, Celzard A, Zicans J, Kuzhir P (2018) Radiation modification and radiation hardness of microwave properties for some polymer nanocomposites under Co-60 gamma irradiation. Nucl Instrum Meth B 435:242–245Google Scholar
  21. 21.
    Hai L, Diep TB, Nagasawa N, Yoshii F, Kume T (2003) Radiation depolymerization of chitosan to prepare oligomers. Nucl Instrum Meth B 208:466–470Google Scholar
  22. 22.
    Miller AA, Lawton EJ, Balwit JS (1954) Effect of chemical structure of vinyl polymers on crosslinking and degradation by ionizing radiation. J Polym Sci. 14:77Google Scholar
  23. 23.
    Ahmed GS, Wahib MA, Kamal MAK (2017) Enhancement of the conductivity and dielectric properties of PVA/Ag nanocomposite films using γ irradiation. Mater Chem Phys 191:225–229Google Scholar
  24. 24.
    Gargallo L, Radic D (1983) Interaction of polyvinylpyrrolidone with small cosolutes in aqueous and nonaqueous media. Polymer 24:91–94Google Scholar
  25. 25.
    Pennington MR, Capriotti JA, Van de Walle GR (2018) In vitro efficacy of povidone iodine and hydroxyethyl cellulose, alone and in combination, against common feline ocular pathogens. Vet J 241:38–41PubMedGoogle Scholar
  26. 26.
    Guettari M, Aschi A, Gomati R, Gharbi A (2008) Structural transition of a homopolymer in solvents mixture. Mater Sci Eng 28:811–815Google Scholar
  27. 27.
    Guettari M, Gharbi A (2010) A model to study the behavior of a polar polymer in the mixture of polar solvents. J Macromol Sci B 49:592–601Google Scholar
  28. 28.
    Guettari M, Gomati R, Gharbi A (2010) Effect of temperature on cononsolvency of polyvinylpyrrolidone in water/methanol mixture. J Macromol Sci B 49:552–562Google Scholar
  29. 29.
    Guettari M, Gomati R, Gharbi A (2010) Determination of the flory exponent by study of steady shear viscosity. J Macromol Sci B. 51:153–163Google Scholar
  30. 30.
    El Aferni A, Guettari M, Tajouri T (2016) Effect of polymer conformation on polymer-surfactant interaction in salt-free water. Colloid Polym Sci 294:1097–1106Google Scholar
  31. 31.
    Farah K, Marzougui K, Hosni F, Mejri R, Hamzaoui AH (2013) In: Istvan B (ed) Gamma rays: technology, applications and health implications. University of Novi Sad, Novi SadGoogle Scholar
  32. 32.
    Marzougui K, Hamzaoui AH, Farah K, Ben Nassib N (2008) Electrical conductivity study of gamma-irradiated table sugar for high-dose dosimetry. Radiat Meas 43:1254–1257Google Scholar
  33. 33.
    Martin P, Vlasta B, Peter S (2007) EPR spectroscopy: a tool to characterizegamma irradiated foods. J Food Nutr Res. 46:75–83Google Scholar
  34. 34.
    BenBettaieb N, Karbowiak T, Bornaz S, Debeaufort F (2015) Spectroscopic analyses of the influence of electron beam irradiation doses on mechanical, transport properties and microstructure of chitosan-fish gelatin blends films. Food Hydrocolloid 46:37–51Google Scholar
  35. 35.
    Hans M, Helmut R (1973) EPR investigation of γ-irradiated sulfur-containing vinylpolymers. Makromolekul Chem 174:811–822Google Scholar
  36. 36.
    Jenifer ED, Ernest S (1981) γ-irradiations of n-vinylpyrrolidin-2-one and its homopolymer. Aust J Chem 34:1413–1421Google Scholar
  37. 37.
    Chapiro A, Legris C (1985) Formation de gels de poly(n-vinylpyrrolidone) Par l’action des rayons gamma sur des solutions aqueuses de poly(n-vinylpyrrolidone). Eur Poly J 21:49–53Google Scholar
  38. 38.
    Sionkowska A, Kozlowska J, Planecka A, Skopinska W (2008) Photochemical stability of poly(vinyl pyrrolidone) in the presence of collagen. J Polym Degrad Stabil 93:2127–2132Google Scholar
  39. 39.
    Hassouna F (2006) Etude des mécanismes de phototransformation de polymères hydrosolubles en milieu aqueux. Université Blaise Pascal—Clermant—Ferrand IIGoogle Scholar
  40. 40.
    Dafader NC, Tahmina A, Haque ME, Swapna SP, Sadia IH (2012) Effect of acrylic acid on the properties of polyvinylpyrrolidone hydrogel prepared by the application of gamma radiation. Afr J Biotechnol 11:13049–13057Google Scholar
  41. 41.
    David C, Verhasset A, Geuskens G (1967) Effet des rayons gamma sur les poly-2-et-4-vinylpyridines. J Polym Sci Part C 16:2181–2189Google Scholar
  42. 42.
    Aswathy J, Marilyn MX, Gaweł Ż, Radhakrishnan NP, Padmanabhan AS, Suresh M (2017) Synthesis, characterization and theoretical studies on novel organic–inorganic hybrid ion–gel polymer thin films from a γ-Fe2O3 doped polyvinylpyrrolidone–N-butylpyridinium tetrafluoroborate composite via intramolecular thermal polymerization. Roy Soc Ch. 7:16623–16636Google Scholar
  43. 43.
    Zhou L, Yonggen L, Weizhe Z, Changling Y, Junqi J (2015) Effects of gamma ray irradiation on poly(acrylonitrile-co-methyl acrylate) fibers. Polym Degrad Stabil. 128:149–157Google Scholar
  44. 44.
    Mohammadian-Kohol M, Asgari M, Shakur HR (2018) Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet. Radiat Phys Chem 145:11–18Google Scholar
  45. 45.
    Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92:1324Google Scholar
  46. 46.
    Park YJ, Kang YS, Park C (2005) Micropatterning of semicrystalline poly (vinylidene fluoride)(PVDF) solutions. Eur Polym J. 41:1002Google Scholar
  47. 47.
    Desrosiers M, Wadley S (2006) Time dependence of the radiation-induced EPR signal in sucrose. Radiat Prot Dosim 118:479Google Scholar
  48. 48.
    Fattibene P, Drick Worth TL, Desrosiers M (1996) Critical evaluation of the sugar-EPR dosimetry system. Appl Radiat Isot 47:1375Google Scholar
  49. 49.
    Saha M, Makhopadhyay M, Ray R, Ballabh TK, Tarafdar S (2015) Impact of tailored gamma irradiation on pore size and particle size of poly(ethylene oxide)films: correlation with molecular weight distribution and microstructural study. Modeling Simul Mater Sci Eng 49:5816–5832Google Scholar
  50. 50.
    Danoux A, Esnouf S, Amekraz B, Dauvois V, Moulin C (2008) Degradation mechanism of poly(ether-urethane) Estane® induced by high-energy radiation. II. Oxidation effects. J Polym Sci B 46:861–878Google Scholar
  51. 51.
    Charlesby A (1960) Atomic radiation and polymers. Pergamon, OxfordGoogle Scholar
  52. 52.
    Dole M (1972) The radiation chemistry of macromolecules. Elsevier, NewYorkGoogle Scholar
  53. 53.
    Damle R, Kulkarni PN, Bhat SV (2009) The effect of composition, electron irradiation and quenching on ionic conductivity in a new solid polymer electrolyte: (PEG)x NH4I. Pramana 72:555–568Google Scholar
  54. 54.
    Lotfy S, Alta A, Abdeltwab E (2018) Comparative study of gamma and ion beam irradiation of polymeric nanocomposite on electrical conductivity. J Appl Polym Sci 135:46–146Google Scholar
  55. 55.
    Jan C, Kwak T, Alan JJ (1975) The equivalent conductivity of aqueous solutions of salts of carboxymethylcellulose: a test of Manning’s limiting law. Can J Chem 53:792Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.NMR in Polymers and Composites Laboratory, Preparatory Institute for Engineering Studies of TunisUniversity of TunisTunisTunisia
  2. 2.Faculty of Science of BizerteUniversity of CarthageCarthageTunisia

Personalised recommendations