Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 901–911 | Cite as

A new hydrothermal cross-linking ion-imprinted chitosan for high-efficiency uranium removal

  • Xuelian Zhong
  • Yanbing Sun
  • Zhibin Zhang
  • Ying Dai
  • Youqun Wang
  • Yuhui Liu
  • Rong Hua
  • Xiaohong CaoEmail author
  • Yunhai Liu


A new hydrothermal cross-linking ion-imprinted chitosan (ion-imprinted-HCC) was synthesized via an easy one-step hydrothermal cross-linking and ion-imprinted technique. The prepared ion-imprinted-HCC was characterized by SEM and FT-IR. Batch studies were carried out to determine the influence of experimental conditions. The maximum adsorption capacity (408.2 mg/g) was obtained at 298.15 K, pH = 7.0, C0 = 50 mg/L, and t = 180 min. The selectivity studies indicated that the ion-imprinted-HCC had high selectivity adsorption for U(VI) ions in the presence of competing ions. Furthermore, ion-imprinted-HCC could be regenerated and reused by using 0.1 mol/L HCl as the elution.


U(VI) Chitosan Ion imprinted Hydrothermal cross-linking 



This work was financially supported by the National Natural Science Foundation of China (21561002, 21866004, 21866003, 21501025, 11605027, 21761002), the Project of the Jiangxi Provincial Department of Education (Grant No. GJJ160550), the Science & Technology Support Program of Jiangxi Province (Grant No. 2018ACB21007), the Jiangxi Program of Academic and Technical Leaders of Major Disciplines (Grant No. 20182BCB22011) and the Project of the Jiangxi Graduate Innovation Fund (YC 2018-S345).


  1. 1.
    Wang X, Fan Q, Yu S, Chen Z, Ai Y, Sun Y, Hobiny A, Alsaedi A, Wang X (2016) High sorption of U(VI) on graphene oxides studied by batch experimental and theoretical calculations. Chem Eng J 287:448–455Google Scholar
  2. 2.
    Budnyak TM, Strizhak AV, Gładysz-Płaska A, Sternik D, Komarov IV, Kołodyńska D, Majdan M, Tertykh VA (2016) Silica with immobilized phosphinic acid-derivative for uranium extraction. J Hazard Mater 314:326–340PubMedGoogle Scholar
  3. 3.
    Han X, Wang Y, Cao X, Dai Y, Liu Y, Dong Z, Zhang Z, Liu Y (2019) Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution. Appl Surf Sci 484:1035–1040Google Scholar
  4. 4.
    Zhang Z, Liu J, Cao X, Luo X, Hua R, Liu Y, Yu X, He L, Liu Y (2015) Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO3/Ca–U(VI)–CO3 complexes. J Hazard Mater 300:633–642PubMedGoogle Scholar
  5. 5.
    Yao W, Wang X, Liang Y, Yu S, Gu P, Sun Y, Xu C, Chen J, Hayat T, Alsaedi A, Wang X (2018) Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: batch and EXAFS studies. Chem Eng J 332:775–786Google Scholar
  6. 6.
    Zhang Z, Dong Z, Wang X, Dai Y, Cao X, Wang Y, Hua R, Feng H, Chen J, Liu Y, Hu B, Wang X (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies. Chem Eng J 370:1376–1387Google Scholar
  7. 7.
    Jin HK, Lee HI, Yeon JW, Jung Y, Ji MK (2010) Removal of uranium(VI) from aqueous solutions by nanoporous carbon and its chelating polymer composite. J Radioanal Nucl Chem 286(1):129–133Google Scholar
  8. 8.
    Chen S, Hong J, Yang H, Yang J (2013) Adsorption of uranium(VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J Environ Radioact 126:253–258PubMedGoogle Scholar
  9. 9.
    Zong P, Wang S, Zhao Y, Wang H, Pan H, He C (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52Google Scholar
  10. 10.
    Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J 15(16):4195–4203PubMedGoogle Scholar
  11. 11.
    Barczak M, Michalak-Zwierz K, Gdula K, Tyszczuk-Rotko K, Dobrowolski R, Dąbrowski A (2015) Ordered mesoporous carbons as effective sorbents for removal of heavy metal ions. Microporous Mesoporous Mater 211:162–173Google Scholar
  12. 12.
    Wu Z, Zhao D (2011) Ordered mesoporous materials as adsorbents. Chem Commun 47(12):3332–3338Google Scholar
  13. 13.
    Darmstadt H, Roy C, Kaliaguine S, Joo SH, Ryoo R (2003) Pore structure and graphitic surface nature of ordered mesoporous carbons probed by low-pressure nitrogen adsorption. Microporous Mesoporous Mater 60(1):139–149Google Scholar
  14. 14.
    Zhang Z, Dong Z, Wang X, Ying D, Niu F, Cao X, Wang Y, Hua R, Liu Y, Wang X (2018) Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217Google Scholar
  15. 15.
    Zhu K, Chen C, Xu M, Chen K, Tan X, Wakeel M, Alharbi NS (2018) In situ carbothermal reduction synthesis of Fe nanocrystals embedded into N-doped carbon nanospheres for highly efficient U(VI) adsorption and reduction. Chem Eng J 331:395–405Google Scholar
  16. 16.
    Titirici MM, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5(5):6796–6822Google Scholar
  17. 17.
    Zhang W, Zhang Z, Cao X, Ma R, Liu Y (2014) Uranium adsorption studies on hydrothermal carbon produced by chitosan using statistical design method. J Radioanal Nucl Chem 301(1):197–205Google Scholar
  18. 18.
    Yu S, Dai Y, Cao X, Zhang Z, Liu Y, Ma H, Xiao S, Lai Z, Chen H, Zheng Z, Le Z (2016) Adsorption of uranium(VI) from aqueous solution using a novel magnetic hydrothermal cross-linking chitosan. J Radioanal Nucl Chem 310(2):651–660Google Scholar
  19. 19.
    Dong Z, Qiu Y, Dai Y, Cao X, Wang L, Wang P, Lai Z, Zhang W, Zhang Z, Liu Y, Le Z (2016) Removal of U(VI) from aqueous media by hydrothermal cross-linking chitosan with phosphate group. J Radioanal Nucl Chem 309(3):1217–1226Google Scholar
  20. 20.
    Wang H, Ma L, Cao K, Geng J, Liu J, Song Q, Yang X, Li S (2012) Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. J Hazard Mater 229–230:321–330PubMedGoogle Scholar
  21. 21.
    Prasada Rao T, Daniel S, Mary Gladis J (2004) Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction (IIP-SPE). TrAC Trends Anal Chem 23(1):28–35Google Scholar
  22. 22.
    Vatanpour V, Madaeni SS, Zinadini S, Rajabi HR (2011) Development of ion imprinted technique for designing nickel ion selective membrane. J Membr Sci 373(1):36–42Google Scholar
  23. 23.
    Xu X, Li Y, Yang D, Zheng X, Wang Y, Pan J, Zhang T, Xu J, Qiu F, Yan Y, Li C (2018) A facile strategy toward ion-imprinted hierarchical mesoporous material via dual-template method for simultaneous selective extraction of lithium and rubidium. J Clean Prod 171:264–274Google Scholar
  24. 24.
    Kong D, Wang N, Qiao N, Wang Q, Wang Z, Zhou Z, Ren Z (2017) Facile preparation of ion-imprinted chitosan microspheres enwrapping Fe3O4 and graphene oxide by inverse suspension cross-linking for highly selective removal of copper(II). ACS Sustain Chem Eng 5(8):7401–7409Google Scholar
  25. 25.
    Dong Z, Qiu Y, Dai Y, Cao X, Wang L, Wang P, Lai Z, Zhang W, Zhang Z, Liu Y (2016) Removal of U(VI) from aqueous media by hydrothermal cross-linking chitosan with phosphate group. J Radioanal Nucl Chem 309(3):1–10Google Scholar
  26. 26.
    Luo X, Liu L, Deng F, Luo S (2013) Novel ion-imprinted polymer using crown ether as a functional monomer for selective removal of Pb(II) ions in real environmental water samples. J Mater Chem A 1(28):8280–8286Google Scholar
  27. 27.
    Meng H, Li Z, Ma F, Jia L, Wang X, Zhou W, Zhang L (2015) Preparation and characterization of surface imprinted polymer for selective sorption of uranium(VI). J Radioanal Nucl Chem 306(1):1–8Google Scholar
  28. 28.
    Zhao L, Qin H, Wu R, Zou H (2012) Recent advances of mesoporous materials in sample preparation. J Chromatogr A 1228:193–204PubMedGoogle Scholar
  29. 29.
    Zagorodnyaya AN, Abisheva ZS, Sharipova AS, Sadykanova SE, Bochevskaya YG, Atanova OV (2013) Sorption of rhenium and uranium by strong base anion exchange resin from solutions with different anion compositions. Hydrometallurgy 131–132:127–132Google Scholar
  30. 30.
    Zhong S, Bai L, Zhao D, Wang L, Li Y, Ding L (2013) Europium(III) coordination polymers micro/nanostructures: a ligand structure effect. Mater Lett 96:125–127Google Scholar
  31. 31.
    Attallah MF, Borai EH, Shady SA (2014) Kinetic investigation for sorption of europium and samarium from aqueous solution using resorcinol–formaldehyde polymeric resin. J Radioanal Nucl Chem 299(3):1927–1933Google Scholar
  32. 32.
    Zhou L, Shang C, Liu Z, Huang G, Adesina AA (2012) Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interface Sci 366(1):165–172PubMedGoogle Scholar
  33. 33.
    Mancheng L, Changlun C, Tao W, Xiangke W (2014) Synthesis of magnetic ion-imprinted composites and selective separation and preconcentration of U(VI). Dalton Trans 43(19):7050–7056Google Scholar
  34. 34.
    Najafi E, Aboufazeli F, Lotfi Zadeh Zhad HR, Sadeghi O, Amani V (2013) A novel magnetic ion imprinted nano-polymer for selective separation and determination of low levels of mercury(II) ions in fish samples. Food Chem 141(4):4040–4045PubMedGoogle Scholar
  35. 35.
    Dai J, He J, Xie A, Gao L, Pan J, Chen X, Zhou Z, Wei X, Yan Y (2016) Novel pitaya-inspired well-defined core–shell nanospheres with ultrathin surface imprinted nanofilm from magnetic mesoporous nanosilica for highly efficient chloramphenicol removal. Chem Eng J 284:812–822Google Scholar
  36. 36.
    Liu Y, Meng X, Luo M, Meng M, Ni L, Qiu J, Hu Z, Liu F, Zhong G, Liu Z, Yan Y (2015) Synthesis of hydrophilic surface ion-imprinted polymer based on graphene oxide for removal of strontium from aqueous solution. J Mater Chem A 3(3):1287–1297Google Scholar
  37. 37.
    Shehzad H, Zhou L, Li Z, Chen Q, Wang Y, Liu Z, Adesina AA (2018) Effective adsorption of U(VI) from aqueous solution using magnetic chitosan nanoparticles grafted with maleic anhydride: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 315(2):195–206Google Scholar
  38. 38.
    Yang Y, Cui J, Zheng M, Hu C, Tan S, Xiao Y, Yang Q, Liu Y (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48(3):380–382Google Scholar
  39. 39.
    Wei J, Zhang X, Liu Q, Li Z, Liu L, Wang J (2014) Magnetic separation of uranium by CoFe2O4 hollow spheres. Chem Eng J 241:228–234Google Scholar
  40. 40.
    Wang Y, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2014) Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI). Appl Surf Sci 320:10–20Google Scholar
  41. 41.
    Li B, Ma L, Tian Y, Yang X, Li J, Bai C, Yang X, Zhang S, Li S, Jin Y (2014) A catechol-like phenolic ligand-functionalized hydrothermal carbon: one-pot synthesis, characterization and sorption behavior toward uranium. J Hazard Mater 271:41–49PubMedGoogle Scholar
  42. 42.
    Chen H, Wang Y, Zhao W, Chen H, Wang Y, Zhao W, Xiong G, Cao X, Dai Y, Le Z, Zhang Z, Liu Y (2017) Phosphorylation of graphehe oxide to improve adsorption of U(VI) from aquaeous solutions. J Radioanal Nucl Chem 313(1):175–189Google Scholar
  43. 43.
    Xu J, Chen M, Zhang C, Yi Z (2013) Adsorption of uranium(VI) from aqueous solution by diethylenetriamine-functionalized magnetic chitosan. J Radioanal Nucl Chem 298(2):1375–1383Google Scholar
  44. 44.
    Mahfouz MG, Galhoum AA, Gomaa NA, Abdel-Rehem SS, Atia AA, Vincent T, Guibal E (2015) Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: equilibrium and kinetic studies. Chem Eng J 262:198–209Google Scholar
  45. 45.
    Xu C, Wang J, Yang T, Chen X, Liu X, Ding X (2015) Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr Polym 121:79–85PubMedGoogle Scholar
  46. 46.
    Huang G, Zou L, Su Y, Lv T, Wang L (2015) Adsorption of uranium(VI) from aqueous solutions using cross-linked magnetic chitosan beads. J Radioanal Nucl Chem 307(2):1135–1140Google Scholar
  47. 47.
    Zhou L, Zou H, Wang Y, Huang Z, Wang Y, Luo T, Liu Z, Adesina AA (2015) Adsorption of uranium(VI) from aqueous solution using magnetic carboxymethyl chitosan nano-particles functionalized with ethylenediamine. J Radioanal Nucl Chem 308(3):935–946Google Scholar
  48. 48.
    Anirudhan TS, Rijith S (2012) Synthesis and characterization of carboxyl terminated poly(methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium(VI) from aqueous media. J Environ Radioact 106:8–19PubMedGoogle Scholar
  49. 49.
    Meng H, Li Z, Ma F, Wang X, ZhouW Zhang L (2015) Synthesis and characterization of surface ion-imprinted polymer based on SiO2-coated graphene oxide for selective adsorption of uranium(VI). RSC Adv 5(83):67662–67668Google Scholar
  50. 50.
    Qian J, Zhang S, Zhou Y, Dong P, Hua D (2015) Synthesis of surface ion-imprinted magnetic microspheres by locating polymerization for rapid and selective separation of uranium(VI). RSC Adv 5(6):4153–4161Google Scholar
  51. 51.
    Liu Y, Cao X, Le Z, Luo M, Xu W, Huang G (2010) Pre-concentration and determination of trace uranium(VI) in environments using ion-imprinted chitosan resin via solid phase extraction. J Braz Chem Soc 21(3):533–540Google Scholar
  52. 52.
    Zhou L, Shang C, Liu Z, Huang G, Adesina AA (2012) Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interf Sci 366(1):165–172Google Scholar
  53. 53.
    Anirudhan TS, Nima J, Divya PL (2015) Adsorption and separation behavior of uranium(VI) by 4-vinylpyridine-grafted-vinyltriethoxysilane-cellulose ion imprinted polymer. Chem Eng J 3(2):1267–1276Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Nuclear Resources and EnvironmentEast China University of TechnologyNanchangPeople’s Republic of China

Personalised recommendations