Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 533–543 | Cite as

Development and initial characterization of 99mTc labeled N-acetyl neuraminic acid for its application in in-vivo imaging of cancer: a preclinical study

  • Ravi Ranjan Kumar
  • Devinder Kumar Dhawan
  • Vijayta Dani ChadhaEmail author
Article
  • 133 Downloads

Abstract

In the present study, N-acetyl neuraminic acid (Neu5Ac) was labeled with 99mTc and its bioevaluation was performed. Radiolabeling of Neu5Ac was obtained with a maximum labeling yield of 93.6% and was confirmed by instant thin layer chromatography, mass spectra (ESI-MS) and high performance liquid chromatography. The resulting radiocomplex showed hydrophilic properties and stability up to 8 h at room temperature in rat serum and saline. Biodistribution and scintigraphic studies exhibited accumulation of activity in the colon of tumor bearing rats. In conclusion, [99mTc]Tc-N-acetyl neuraminic acid exhibits selectivity for neoplastic colon tissue.

Keywords

Sialic acid Radiolabeling Radionuclide imaging Biodistribution Technitium-99m Experimentally induced colon tumor 

Notes

Acknowledgements

The authors thank to post graduate institute of medical research (PGIMER), Chandigarh India, for providing radioisotope.

Funding

This work is supported by Research Promotion Fund, Panjab University Alumni Association and DST (PURSE), India.

References

  1. 1.
    Feijoo C, Páez de la Cadena M, Rodriguez-Berrocal FJ, Martinez-Zorzano VS (1997) Sialic acid level in serum and tissue from colorectal cancer patients. Cancer Lett 112:155–160CrossRefGoogle Scholar
  2. 2.
    Paszkowska A, Berbec H, Semczuk A, Cybulski M (1998) Sialic acid concentration in serum and tissue of endometrial cancer patients. Eur J Obstet Gynecol Reprod Biol 76:211–215CrossRefGoogle Scholar
  3. 3.
    Dall’Olio F, Trerè D (1983) Expression of alpha 2,6 sialylated sugar chain in normal and neoplastic colon tissues. Detection by digoxigenin conjugated Sambucus nigra aglutinin. Eur J Histochem 37:257–265Google Scholar
  4. 4.
    Marth E, Flaschka G, Stiegler S, Moser J (1988) Sialic acid as a marker for differentiation between benign and malignant intracranial tumours. Clin Chim Acta 176:251–257CrossRefGoogle Scholar
  5. 5.
    Singhal A, Hakomori S (1990) Molecular changes in carbohydrate antigens associated with cancer. Bioassays 12:223–230CrossRefGoogle Scholar
  6. 6.
    Kelm S, Schauer R (1997) Sialic acid in molecular and cellular interaction. Int Rev Cytol 175:137–240CrossRefGoogle Scholar
  7. 7.
    Aurélie C, Sylvain J, Marie B, Ange KM, Anne HL, Sophie GD, Philippe D (2010) Consequences of the expression of sialylated antigens in breast cancer. Carbohydr Res 345:1377–1383CrossRefGoogle Scholar
  8. 8.
    Kawaguchi T (2005) Cancer metastasis: characterization and identification of the behavior of metastatic tumor cells and the cell adhesion molecules, including carbohydrates. Curr Drug Targets Cardiovasc Hematol Disord 5:39–64CrossRefGoogle Scholar
  9. 9.
    Ura H, Denno R, Hirata K, Yamaguchi K, Yasoshima T, Shishido T (1997) Close correlation between increased sialyl-lewis (x) expression and metastasis in human gastric carcinoma. World J Surg 2:773–776CrossRefGoogle Scholar
  10. 10.
    Wang PH (2006) Altered sialylation and its roles in gynecologic cancers. J Cancer Mol 2:107–116Google Scholar
  11. 11.
    Wu X, Tian Y, Yu M, Lin B, Han J, Han J, Han S (2014) A fluorescently labelled sialic acid for high performance intraoperative tumor detection. Biomater Sci 2:1120–1127CrossRefGoogle Scholar
  12. 12.
    Bowen M, Orvig C (2008) 99m-technetium carbohydrate conjugates as potential agents in molecular imaging. Chem Commun 41:5077–5091CrossRefGoogle Scholar
  13. 13.
    Welch MJ, Redvanly CS (2003) Handbook of radiopharmaceuticals: radiochemistry and applications. Wiley, New YorkGoogle Scholar
  14. 14.
    Jan G, Passi ND, Dhawan DK, Chadha VD (2017) Cancer targeting potential of 99mTc-finasteride in experimental model of prostate carcinogenesis. Cancer Biother Radiopharm 32:39–47CrossRefGoogle Scholar
  15. 15.
    Byrne EF, Smith JE (1979) Technetium complexes of aliphatic thiols. Synthesis and characterization of oxobis (l,2- and l.3-dithiolato) technetium (V) anions. Inorg Chem 18:1832–1835CrossRefGoogle Scholar
  16. 16.
    Kieffer DM, Cleynhens BJ, Vanbilloen HP, Rattat D, Terwinghe CY, Mortelmans L, Bormans GM, Verbruggen AM (2006) Synthesis and biological evaluation of a technetium-99m (I)-tricarbonyl- labelled phenyltropane derivative. Bioorg Med Chem Lett 2:382–386CrossRefGoogle Scholar
  17. 17.
    Wentao K, Liangang Z, Guanquan W, Wen C, Hongyuan W, Zhijun Z (2016) Coordination investigation of rhenium with MAG3 using LC-MS and UV spectrometer and the simple radiolabelling process. J Radioanal Nucl Chem 2:695–702Google Scholar
  18. 18.
    Vanderghinste D, Van Eeckhoudt M, Terwinghe C, Mortelmans L, Bormans GM, Verbruggen AM, Vanbilloen HP (2003) An efficient HPLC method for the analysis of isomeric purity of technetium-99m-exametazime and identity confirmation using LC-MS. J Pharm Biomed Anal 32:679–685CrossRefGoogle Scholar
  19. 19.
    Bormans G, Cleynhens B, Verduyckt T, Huyghe D, Kieffer D, Verbruggen A, Verbeke K (2003) Identity confirmation of 99mTc-MAG3, 99mTc-Sestamibi and 99mTc-ECD using radio-LC-MS. J Pharm Biomed Anal 32:669–678CrossRefGoogle Scholar
  20. 20.
    Hosseinimehr SJ, Ahmadi A, Taghvai R (2010) Preparation and biodistribution study of technetium-99m-labeled quercetin as a potential radical scavenging agent. J Radioanal Nucl Chem 3:563–566CrossRefGoogle Scholar
  21. 21.
    Chadha VD, Vaiphei K, Dhawan DK (2007) Zinc mediated normalization of histoarchitecture and anti- oxidant status offers protection against initiation of experimental carcinogenesis. Mol Cell Biochem 304:101–108CrossRefGoogle Scholar
  22. 22.
    Kamal R, Dhawan DK, Chadha VD (2017) Evaluation of 99mTc-resveratrol as a colon cancer targeting probe. Eur J Cancer Care 26:3–10CrossRefGoogle Scholar
  23. 23.
    Priyadarshani A, Chuttani K, Mittal G, Bhatnagar A (2010) Radiolabeling, biodistribution and gamma scintigraphy of noscapine hydrochloride in normal and polycystic ovary induced rats. J Ovarian Res 3:1–8CrossRefGoogle Scholar
  24. 24.
    Kumar P, Singh B, Mishra A, Mittal BR (2015) Development of a single vial kit formulation of 99mTc-labeled doxorubicin for tumor imaging and treatment response assessment-preclinical evaluation and preliminary human results. J Label Compd Radiopharm 5:242–249CrossRefGoogle Scholar
  25. 25.
    Corpet DE, Pierre F (2005) How good are rodent models of carcinogenesis in predicting efficacy in humans. A systematic review and meta-analysis of colon chemoprevention in rats, mice and men. Eur J Cancer 41:1911–1922CrossRefGoogle Scholar
  26. 26.
    Mahmood A, Jones AG (2003) In: Welch MJ, Redvanly CS (eds) Handbook of radiopharmaceuticals. Wiley, Chichester, pp 323–362Google Scholar
  27. 27.
    Dilworth RJ, Parrott JS (1998) The biomedical chemistry of technetium and rhenium Jonathan. Chem Soc Rev 27:43–55CrossRefGoogle Scholar
  28. 28.
    Papagiannopoulou D (2017) Technetium-99m radiochemistry for pharmaceutical applications. J Label Compd Radiopharm 60:502–520CrossRefGoogle Scholar
  29. 29.
    Hakomori S (1989) Aberrant glycosylation in tumor and tumor-associated carbohydrate antigens. Adv Cancer Res 52:257–331CrossRefGoogle Scholar
  30. 30.
    Passaniti A, Hart GW (1988) Cell surface sialylation and tumours cell metastatic potential of B16 melanoma variants correlates with their relative number of specific penultimate with oligosaccharide structure. J Biol Chem 263:7591–7603PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Centre for Nuclear MedicinePanjab UniversityChandigarhIndia
  2. 2.Department of BiophysicsPanjab UniversityChandigarhIndia

Personalised recommendations