Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 1039–1048 | Cite as

Simple procedure for optimizing model of NaI(Tl) detector using Monte Carlo simulation

  • Truong Thanh Sang
  • Huynh Dinh Chuong
  • Hoang Duc TamEmail author


This study proposed a simple procedure for optimizing the model of NaI(Tl) detector. The procedure considers using linear functions for describing the dependence of efficiency on each specification of detector using Monte Carlo simulation. The measurements were performed to determine the efficiency of detector using point calibration sources. Using these efficiencies, the optimized specifications were interpolated based on the above linear functions. The validation of optimized model was carried out by experimentally determining the efficiencies of detector and estimating the radioactivities of 40K, 238U, and 232Th isotopes in reference samples. The obtained results showed good agreement between experiment and simulation.


Efficiency MCNP NaI(Tl) detector Optimize Simple procedure 



This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.04-2018.24.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    X-5 Monte Carlo Team (2005) A general Monte Carlo N-particle transport code version 5, volume II, user guide. Los Alamos national Laboratory, LA-CP-03-0245Google Scholar
  2. 2.
    Azbouche A, Belgaid M, Mazrou H (2015) Monte Carlo calculations of the HPGe detector efficiency for radioactivity measurement of large volume environmental samples. J Environ Radioact 146:119–124. CrossRefPubMedGoogle Scholar
  3. 3.
    Boson J, Ågren G, Johansson L (2008) A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations. Nucl Instrum Methods A 587:304–314. CrossRefGoogle Scholar
  4. 4.
    Dryak P, Kovar P (2006) Experimental and MC determination of HPGe detector efficiency in the 40–2754 keV energy range for measuring point source geometry with the source-to-detector distance of 25 cm. Appl Radiat Isot 64:1346–1349. CrossRefPubMedGoogle Scholar
  5. 5.
    Karamanis D (2003) Efficiency simulation of HPGe and Si(Li) detectors in γ- and X-ray spectroscopy. Nucl Instrum Methods A 505:282–285. CrossRefGoogle Scholar
  6. 6.
    Mohammad Modarresi S, Farhad Masoudi S (2018) On the gamma spectrometry efficiency of reference materials and soil samples. J Environ Radioact 183:54–58. CrossRefPubMedGoogle Scholar
  7. 7.
    Montalván Olivares DM, Guevara MVM, Velasco FG (2017) Determination of the HPGe detector efficiency in measurements of radioactivity in extended environmental samples. Appl Radiat Isot 130:34–42. CrossRefPubMedGoogle Scholar
  8. 8.
    Ródenas J, Martinavarro A, Rius V (2000) Validation of the MCNP code for the simulation of Ge-detector calibration. Nucl Instrum Methods A 450:88–97. CrossRefGoogle Scholar
  9. 9.
    Ródenas J, Gallardo S, Ballester S, Primault V, Ortiz J (2007) Application of the Monte Carlo method to the analysis of measurement geometries for the calibration of a HPGe detector in an environmental radioactivity laboratory. Nucl Instrum Methods B 263:144–148. CrossRefGoogle Scholar
  10. 10.
    Hung NQ, Chuong HD, Vuong LQ, Thanh TT, Tao CV (2016) Intercomparison NaI(Tl) and HPGe spectrometry to studies of natural radioactivity on geological samples. J Environ Radioact 164:197–201. CrossRefPubMedGoogle Scholar
  11. 11.
    Cinelli G, Tositti L, Mostacci D, Baré J (2016) Calibration with MCNP of NaI detector for the determination of natural radioactivity levels in the field. J Environ Radioact 155–156:31–37. CrossRefPubMedGoogle Scholar
  12. 12.
    Ayaz-Maierhafer B, DeVol TA (2007) Determination of absolute detection efficiencies for detectors of interest in homeland security. Nucl Instrum Methods A 579:410–413. CrossRefGoogle Scholar
  13. 13.
    Tam HD, Chuong HD, Thanh TT, Tao CV (2016) A study of the effect of Al2O3 reflector on response function of NaI(Tl) detector. Radiat Phys Chem 125:88–93. CrossRefGoogle Scholar
  14. 14.
    Hajheidari MT, Safari MJ, Afarideh H, Rouhi H (2016) Experimental validation of response function of a NaI(Tl) detector modeled with Monte Carlo codes. J Instrum 11:P06011. CrossRefGoogle Scholar
  15. 15.
    Chuong HD, Hung NQ, Le NTM, Nguyen VH, Thanh TT (2019) Validation of gamma scanning method for optimizing NaI(Tl) detector model in Monte Carlo simulation. Appl Radiat Isot 149:1–8. CrossRefPubMedGoogle Scholar
  16. 16.
    Tam HD, Yen NTH, Tran LB, Chuong HD, Thanh TT (2017) Optimization of the Monte Carlo simulation model of NaI(Tl) detector by Geant4 code. Appl Radiat Isot 130:75–79. CrossRefGoogle Scholar
  17. 17.
    Salgado CM, Brandão LEB, Schirru R, Pereira CMNA, Conti CC (2012) Validation of a NaI(Tl) detector’s model developed with MCNP-X code. Prog Nucl Energy 59:19–25. CrossRefGoogle Scholar
  18. 18.
    Shi HX, Chen BX, Li TZ, Yun D (2002) Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector. Appl Radiat Isot 57:517–524. CrossRefPubMedGoogle Scholar
  19. 19.
    Berlizov AN (2009) MCNP-CP: a correlated particle radiation source extension of a general purpose Monte Carlo N-particle transport code, pp 183–194. Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsHo Chi Minh City University of EducationHo Chi Minh CityVietnam
  2. 2.Nuclear Technique LaboratoryVNUHCM-University of ScienceHo Chi Minh CityVietnam

Personalised recommendations