Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 3, pp 1397–1408 | Cite as

Rapid methods for radiostrontium determination in aerosol filters and vegetation in emergency situations using PS resin

  • Marina Sáez-MuñozEmail author
  • Héctor Bagán
  • Alex Tarancón
  • José F. García
  • Josefina Ortiz
  • Sofía Carlos
  • Sebastián Martorell
Article
  • 55 Downloads

Abstract

This study describes a rapid and novelty method for radiostrontium determination in aerosol filters and vegetation based on the use of plastic scintillation resins (PS resin), which combines the separation and measurement preparation into a single step. The optimization of the pre-treatment steps and the use of PS resin allows a simplification of the radiochemistry and a reduction in the time of analysis to 8 h and 12 h for aerosol filters and vegetation, respectively. The limits of detection were on average 0.04 Bq (filter)−1 and 3 Bq (kg-fresh)−1. The method obtained high recoveries (82% on average) and relative bias for total radiostrontium were below 30%. Individual activities of 89Sr and 90Sr were obtained by deconvolution methods.

Keywords

Plastic scintillation resins Emergency situations Radiostrontium Aerosol filters Vegetation Rapid method 

Notes

Acknowledgements

The authors are grateful to the Spanish Ministerio de Economia y Competitividad (MINECO) for financial support, under CTM2017-87107-R and the Catalan Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) for financial support, under 2017-SGR-907. We should also like to thank the Universitat Politècnica de València for finantial support under the “Programa propio para la Formación de Personal Investigador (FPI) de la Universitat Politècnica de València—Subprograma 1”, and the Valencian Agency for Security and Emergency for their support (S7042000 (2018)) in the “Development of the Emergency Radiological Surveillance Plan” in the Valencian Community (Spain).

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.

References

  1. 1.
    EPA (2009) EPA 402-R-09-007, radiological laboratory sample analysis guide for incidents of national significance—radionuclides in air. U.S. Environmental Protection Agency, MontgomeryGoogle Scholar
  2. 2.
    International Atomic Energy Agency (2015) The Fukushima Daiichi accident, technical volume 4, radiological consequences. IAEA, ViennaGoogle Scholar
  3. 3.
    International Atomic Energy Agency (2006) Environmental consequences of the chernobyl accident and their remediation: twenty Years of experience, report of the UN chernobyl forum expert group “Environment”, Radiological assessment reports series no. 8, IAEA, ViennaGoogle Scholar
  4. 4.
    Council Regulation (Euratom) 2016/52 of 15 January 2016 laying down maximum permitted levels of radioactive contamination of food and feed following a nuclear accident or any other case of radiological emergency, and repealing Regulation (Euratom) No 3954/87 and Commission Regulations (Euratom) No 944/89 and (Euratom) No 770/90Google Scholar
  5. 5.
    EPA (2008) EPA 402-R-07-007, radiological laboratory sample analysis guide for incidents of national significance—radionuclides in water. U.S. Environmental Protection Agency, MontgomeryGoogle Scholar
  6. 6.
    EPA (2012) EPA 402-R-12-006, radiological laboratory sample analysis guide for incident response—radionuclides in soil. U.S. Environmental Protection Agency, MontgomeryGoogle Scholar
  7. 7.
    Vajda N, Kim CK (2010) Determination of radiostrontium isotopes: a review of analytical methodology. Appl Radiat Isot 68:2306–2326CrossRefGoogle Scholar
  8. 8.
    Shao Y, Yang G, Tazoe H, Ma L, Yamada M, Xua D (2018) A review of measurement methodologies and their applications to environmental 90Sr. J Environ Radioact 192:321–333CrossRefGoogle Scholar
  9. 9.
    Wang J (2013) A quick liquid scintillation counting technique for analysis of 90Sr in environmental samples. Appl Radiat Isot 81:169–174CrossRefGoogle Scholar
  10. 10.
    Maxwell SL, Culligan B, Noyes G (2010) Rapid separation method for actinides in emergency air filter samples. Appl Radiat Isot 68:2125–2131CrossRefGoogle Scholar
  11. 11.
    Chobola R, Mell P, Daróczi L, Vincze A (2006) Rapid determination of radiostrontium isotopes in samples of NPP origin. J Radioanal Nucl Chem 267(2):297–304CrossRefGoogle Scholar
  12. 12.
    IAEA (1999) IAEA-TECDOC-1092, Generic procedures for monitoring in a nuclear or radiological emergency. International Atomic Energy Agency, VienaGoogle Scholar
  13. 13.
    Amano H, Sakamoto H, Shiga N, Suzuki K (2016) Method for rapid screening analysis of Sr-90 in edible plant samples collected near Fukushima, Japan. Appl Radiat Isot 112:131–135CrossRefGoogle Scholar
  14. 14.
    Maxwell S, Culligan B, Noyes G (2010) Rapid separation of actinides and radiostrontium in vegetation samples. J Radioanal Nucl Chem 286:273–282CrossRefGoogle Scholar
  15. 15.
    Martin J, Odell K (1998) The development of emergency radioanalytical techniques for the determination of radiostrontium and transuranic radioisotopes in environmental materials. Radioact Radiochem 9(3):49–59Google Scholar
  16. 16.
    Janda J, Sladek P, Sas D (2012) Rapid dissolution of biological samples using microwave digestion for determination of radionuclide contamination by liquid scintillation. J Radioanal Nucl Chem 293:223–229CrossRefGoogle Scholar
  17. 17.
    EPA (2012) EPA 402-R12-009, rapid method for acid digestion of glass-fiber and organic/polymeric composition filters and swipes prior to isotopic U, Pu, Am, Sr and Ra analyses for environmental remediation following homeland security events. U.S. Environmental Protection Agency, MontgomeryGoogle Scholar
  18. 18.
    EPA (2012) EPA 402-R12-008, rapid method for sodium carbonate fusion of glass-fiber and organic/polymeric composition filters and swipes prior to isotopic U, Pu, Am, Sr, Ra analyses for environmental remediation following homeland security events. U.S. Environmental Protection Agency, MontgomeryGoogle Scholar
  19. 19.
    Tarancón A, Bagán H, García JF (2017) Plastic scintillators and related analytical procedures for radionuclide analysis. J Radioanal Nucl Chem 314:555–572CrossRefGoogle Scholar
  20. 20.
    Bagán H, Tarancón A, Rauret G, García JF (2011) Radiostrontium separation and measurement in a single step using plastic scintillators plus selective extractants. Application to aqueous sample analysis. Anal Chim Acta 686:50–56CrossRefGoogle Scholar
  21. 21.
    Sáez-Muñoz M, Bagán H, Tarancón A, García JF, Ortiz J, Martorell S (2018) Rapid method for radiostrontium determination in milk in emergency situations using PS resin. J Radioanal Nucl Chem 315:543–555CrossRefGoogle Scholar
  22. 22.
    Kim CK, Al-Hamwi A, Toervenyi A, Kis-Benedek G, Sansone U (2009) Validation of rapid method for the determination of radiostrontium in milk. Appl Radiat Isot 67:786–793CrossRefGoogle Scholar
  23. 23.
    Fons-Castells J, Tent-Petrus J, Llauradó M (2017) Simultaneous determination of specific alpha and beta emitters by LSC-PLS in water samples. J Environ Radioact 166:195–201CrossRefGoogle Scholar
  24. 24.
    Grau Malonda A, Rodriguez Barquero L, Grau Carles A (1994) Radioactivity determination of 90Y, 90Sr and 89Sr mixtures by spectral deconvolution. Nucl Instrum Meth A 339:31–37CrossRefGoogle Scholar
  25. 25.
    Altzitzoglou T (2008) Radioactivity determination of individual radionuclides in a mixture by liquid scintillation spectra deconvolution. Appl Radiat Isot 66(6–7):1055–1061CrossRefGoogle Scholar
  26. 26.
    Remetti R, Sessa A (2011) Beta spectra deconvolution for liquid scintillation counting. J Radioanal Nucl Chem 287(1):107–111CrossRefGoogle Scholar
  27. 27.
    Grau Carles A, Grau Malonda A (1990) Spectral Interpolation and unfolding to measure multi-labelled samples by liquid scintillation. Ciemat 675, Sp lSSN 614-087-XGoogle Scholar
  28. 28.
    Eisinberg A, Fedele G (2007) Discrete orthogonal polynomials on equidistant nodes. Proc Int Math Forum 21(2):1007–1021CrossRefGoogle Scholar
  29. 29.
    Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least-squares procedures. Anal Chem 36:1627–1639CrossRefGoogle Scholar
  30. 30.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313CrossRefGoogle Scholar
  31. 31.
    Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40(3):586–593CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Laboratorio de Radiactividad Ambiental, MEDASEGI Research GroupUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Department of Chemical and Nuclear Engineering, MEDASEGI Research GroupUniversitat Politècnica de ValènciaValenciaSpain
  3. 3.Department of Chemical Engineering and Analytical ChemistryUniversity of BarcelonaBarcelonaSpain
  4. 4.Serra-Húnter ProgramGeneralitat de CatalunyaBarcelonaSpain

Personalised recommendations