Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 1003–1010 | Cite as

Electrochemical extraction of Sm(III) on active Ni electrode fabricated Sm–Ni alloys

  • Yuhui Liu
  • Shuang Zhang
  • Weihong Zhong
  • Gengkun Cui
  • Yingcai Wang
  • Ying Dai
  • Xiaohong Cao
  • Youqun Wang
  • Zhibin ZhangEmail author
  • Yunhai LiuEmail author


The reductive extraction of Sm(III) from LiCl–KCl–SmCl3 molten salts were investigated by cyclic voltammetry, square wave voltammetry and open-circuit chronopotentiometry techniques. Here, Sm–Ni alloys are prepared by molten salt electrolysis in LiCl–KCl–SmCl3 molten salt system on active Ni electrode. The physicochemical characteristics of the Sm–Ni alloys were determined by X-ray power diffraction, high-resolution transmission electron microscopy-selected area electron diffraction and X-ray photoelectron spectroscopy. The electrochemical extraction can attain about 88.5–78.5%. The results show that this method can be used to recover lanthanides from residual fission products in salts.


Electroextraction Sm–Ni alloys Lanthanides LiCl–KCl molten salts 



This work was financially supported by the National Natural Science Foundation of China (21906019, 21906018, 21561002, 21866004, 21866003), the Science and Technology Support Program of Jiangxi Province (Grant No. 2018ACB21007), the Jiangxi Program of Academic and Technical Leaders of Major Disciplines (Grant No. 20182BCB22011), the Project of the Jiangxi Provincial Department of Education (Grant Nos. GJJ160550, GJJ180385, GJJ180400). The authors declare that they have no competing interests.

Supplementary material

10967_2019_6775_MOESM1_ESM.docx (732 kb)
Supplementary material 1 (DOCX 731 kb)


  1. 1.
    Qian ZH, Liu XY, Qiao YB, Wang S, Qin Q, Shi LQ, Peng HH (2019) Effect of fluorine on stabilization/solidification of radioactive fluoride liquid waste in magnesium potassium phosphate cement. J Radioanal Nucl Chem 319(1):93–399CrossRefGoogle Scholar
  2. 2.
    Zhang Z, Dong Z, Wang X, Dai Y, Cao X, Wang Y, Hua R, Feng H, Chen J, Liu Y, Hu B, Wang X (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies. Chem Eng J 370:1376–1387CrossRefGoogle Scholar
  3. 3.
    Kumar S, Maji S, Sundararajan K, Sankaran K (2019) Development of a simple spectrophotometric method to estimate uranium concentration in LiCl–KCl matrix. J Radioanal Nucl Chem 320(2):337–343CrossRefGoogle Scholar
  4. 4.
    Han X, Wang Y, Cao X, Dai Y, Liu Y, Dong Z, Zhang Z, Liu Y (2019) Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution. Appl Surf Sci 484:1035–1040CrossRefGoogle Scholar
  5. 5.
    Zhang Z, Dong Z, Wang X, Ying D, Niu F, Cao X, Wang Y, Hua R, Liu Y, Wang X (2018) Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Liu J, Cao X, Luo X, Hua R, Liu Y, Yu X, He L, Liu Y (2015) Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO3/Ca–U(VI)–CO3 complexes. J Hazard Mater 300:633–642PubMedCrossRefGoogle Scholar
  7. 7.
    Kim SW, Jeon MK, Choi EY (2019) Electrolytic behavior of SrCl2 and BaCl2 in LiCl molten salt during oxide reduction in pyroprocessing. J Radioanal Nucl Chem 321:361–365CrossRefGoogle Scholar
  8. 8.
    Braysher E, Russell B, Woods S, García-Miranda M, Ivanov P, Bouchard B, Read D (2019) Complete dissolution of solid matrices using automated borate fusion in support of nuclear decommissioning and production of reference materials. J Radioanal Nucl Chem 321:183–196CrossRefGoogle Scholar
  9. 9.
    Pillai JS, Sahu M, Chaudhury S (2018) A simple and fast fusion technique to recover plutonium embedded inside molten solidified Cu mass contained in refractory alumina crucibles. J Radioanal Nucl Chem 318(2):1419–1425CrossRefGoogle Scholar
  10. 10.
    Wasnik MS, Grant AK, Carlson K, Simpson MF (2019) Dechlorination of molten chloride waste salt from electrorefining via ion-exchange using pelletized ultra-stable HY zeolite in a fluidized particle reactor. J Radioanal Nucl Chem 320(2):309–322CrossRefGoogle Scholar
  11. 11.
    Jang J, Kim T, Eun HC, Kim GY, Lee S (2018) Uranium recovery from liquid cadmium separated from the molten salt used in electrorefining. J Radioanal Nucl Chem 318(3):1939–1947CrossRefGoogle Scholar
  12. 12.
    Lambert H, Kerry T, Sharrad CA (2018) Preparation of uranium (III) in a molten chloride salt: a redox mechanistic study. J Radioanal Nucl Chem 317(2):925–932PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kim GY, Kim TJ, Jang J, Eun HC, Lee SJ (2017) Formation of U–Zn alloys in the molten LiCl–KCl eutectic. J Radioanal Nucl Chem 314(1):529–532CrossRefGoogle Scholar
  14. 14.
    Kim DH, Park TH, Bae SE, Lee N, Kim JY, Cho YH, Song K (2016) Electrochemical preparation and spectroelectrochemical study of neptunium chloride complexes in LiCl–KCl eutectic melts. J Radioanal Nucl Chem 308(1):31–36CrossRefGoogle Scholar
  15. 15.
    Castrillejo Y, Fernandez P, Medina J, Hernandez P, Barrado E (2011) Electrochemical extraction of samarium from molten chlorides in pyrochemical processes. Electrochim Acta 56:8638–8644CrossRefGoogle Scholar
  16. 16.
    Cordoba G, Caravaca C (2004) An electrochemical study of samarium ions in the molten eutectic LiCl plus KCl. J Electroanal Chem 572:145–151CrossRefGoogle Scholar
  17. 17.
    Liu YL, Yuan LY, Ye GA, Zhang ML, He H, Tang HB, Shi WQ (2014) Electrochemical extraction of samarium from LiCl–KCl melt by forming Sm–Zn alloys. Electrochim Acta 120:369–378CrossRefGoogle Scholar
  18. 18.
    Massot L, Chamelot P, Taxil P (2005) Cathodic behaviour of samarium(III) in LiF–CaF2 media on molybdenum and nickel electrodes. Electrochim Acta 50:5510–5517CrossRefGoogle Scholar
  19. 19.
    Liu YH, YanY D, Zhang ML, Zheng JN, ZhaoY WP, Yin TQ, Xue Y, Jing XY, Han W (2016) Electrochemical synthesis of Sm–Ni alloy magnetic materials by Co-reduction of Sm(III) and Ni(II) in LiCl–KCl–SmCl3–NiCl2 Melt. J Electrochem Soc 163:672–681CrossRefGoogle Scholar
  20. 20.
    Ji DB, Yan YD, Zhang ML, Li X, Jing XY, Han W, Zhang ZJ (2015) Separation of lanthanum from samarium on solid aluminum electrode in LiCl–KCl eutectic melts. J Radioanal Nucl Chem 304(3):1123–1132CrossRefGoogle Scholar
  21. 21.
    Iida T, Nohira T, Ito Y (2001) Electrochemical formation of Sm–Ni alloy films in a molten LiCl–KCl–SmCl3 system. Electrochim Acta 46(16):2537–2544CrossRefGoogle Scholar
  22. 22.
    Yin TQ, Liang Y, Qu JM, Li P, An RF, Xue Y, Yan YD (2017) Thermodynamic and electrochemical properties of praseodymium and the formation of Ni–Pr intermetallics in LiCl–KCl melts. J Electrochem Soc 164(13):835–842CrossRefGoogle Scholar
  23. 23.
    Yasuda K, Kobayashi S, Nohira T (2013) Electrochemical formation of Nd–Ni alloys in molten NaCl–KCl–NdCl3. Electrochim Acta 92:349–355CrossRefGoogle Scholar
  24. 24.
    Yasuda K, Kobayashi S, Nohira T (2013) Electrochemical formation of Dy–Ni alloys in molten NaCl–KCl–DyCl3. Electrochim Acta 106:293–300CrossRefGoogle Scholar
  25. 25.
    Yasuda K, Kondo K, Nohira T, Hagiwara R (2014) Electrochemical formation of Pr–Ni alloys in LiF–CaF2–PrF3 and NaCl–KCl–PrCl3 melts. J Electrochem Soc 16:3097–3104CrossRefGoogle Scholar
  26. 26.
    Nassau K, Cherry LV, Wallace WE (1960) Intermetallic compounds between lanthanons and transition metals of the first long period: I—preparation, existence and structural studies. J Phys Chem Sol 16:123–130CrossRefGoogle Scholar
  27. 27.
    Laves F, Witte H (1936) Der Einfluß von Valenzelektronen auf die Kristallstruktur ternärer Magnesiumlegierungen. Metallwirtsch 15:840–842Google Scholar
  28. 28.
    Vander Voort GF (1985) Magnetic and electrical materials, vol 9. ASM International, ASM Handbook, Materials Park, pp 531–549Google Scholar
  29. 29.
    Roe GM, de Castilho CM, Lambert RM (1994) Structure and properties of samarium overlayers and Sm/Ni surface alloys on Ni(111). Surf Sci 301:39–51CrossRefGoogle Scholar
  30. 30.
    Chamelot P, Massot L, Hamel C, Nourry C, Taxil P (2007) Feasibility of the electrochemical way in molten fluorides for separating thorium and lanthanides and extracting lanthanides from the solvent. J Radioanal Nucl Chem 360(1):64–74Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Nuclear Resources and EnvironmentEast China University of TechnologyNanchangPeople’s Republic of China

Personalised recommendations