Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 771–779 | Cite as

Time series and isotopic evidence for gaseous components (222Rn, CO2 and its carbon isotopes) of soil under a cool temperate deciduous forest in Hokkaido, Japan

  • Ryoko FujiyoshiEmail author
  • Taichi Nakamura
  • Bor Krajnc
  • Nives Ogrinc
  • Janja Vaupotič
Article
  • 34 Downloads

Abstract

The behavior of gaseous components of forest soil was assessed by simultaneous monitoring of 222Rn, CO2 and its carbon isotopes (δ13C, Δ14C) in soil air under a semi natural forest in northern Japan. The isotope ratio of 14C (Δ14C) in soil air CO2 was found to decrease towards late summer, suggesting gradual depletion of easily decomposed soil organic matter. There was a specific case that soil air CO2 with depleted 14C appeared suddenly under snowpack in winter. It is not always appropriate to use soil 222Rn as a tracer of CO2 efflux from the soil surface to the atmosphere.

Keywords

222Rn CO2 Carbon isotopes Monitoring Forest soil 

Notes

Acknowledgements

The authors would like to thank Mr. Toshihiko Hatano of North One Co. Ltd. for helping instrumentation in the forest site. They also give special thanks to Dr. Claude Bertrand at Algade (France) for his useful comments and suggestions on radon monitoring. This study was supported financially by Japan Society for the Promotion of Science on Bilateral Joint Research Projects between Japan and Slovenia in 2017FY and Japan Atomic Energy Agency in 2017A-F02. Carbon isotope measurements by AMS were financially supported by the Shared Use Program of Japan Atomic Energy Agency Facility from 2008 to 2017.

References

  1. 1.
    Biraud S, Ciais P, Ramonet M, Simmonds P, Kazan V, Monfray P, O’Doherty S, Spain TG, Jennings SG (2000) European greenhouse gas emissions estimated from continuous atmospheric measurements and radon 222 at Mace Head, Ireland. J Geophys Res 105(D1):1351–1366CrossRefGoogle Scholar
  2. 2.
    Levin I, Kromer B, Schmidt M, Satorius H (2003) A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14C observations. Geophys Res Lett 30(23):2194.  https://doi.org/10.1029/2003GLO18477 CrossRefGoogle Scholar
  3. 3.
    Schwendenmann L, Veldkamp E (2006) Long-term CO2 production from deeply weathered soils of a tropical rain forest: evidence for a potential positive feedback to climate warming. Global Change Biol 12:1878–1893.  https://doi.org/10.1111/j.1365-2486.2006.01235 CrossRefGoogle Scholar
  4. 4.
    Hirsch AI (2007) On using radon-222 and CO2 to calculate regional-scale CO2 fluxes. Atmos Chem Phys 7:3737–3747CrossRefGoogle Scholar
  5. 5.
    van der Laan S, Manohar S, Vermeulen A, Bosveld F, Meijer H, Manning A, van der Molen M, van der Laan-Luijkx I (2016) Inferring 222Rn soil fluxes from ambient 222Rn activity and eddy covariance measurements of CO2. Atmos Meas Tech 9:5523–5533.  https://doi.org/10.5194/amt-9-5523-2016 CrossRefGoogle Scholar
  6. 6.
    Gregorič A, Vaupotič J, Gabrovšek F (2013) Reasons for large fluctuation of radon and CO2 levels in a dead-end passage of a karst cave (Postojna Cave, Slovenia). Nat Hazards Earth Syst Sci 13:287–297.  https://doi.org/10.5194/nhess-13-287-2013 CrossRefGoogle Scholar
  7. 7.
    Etiope G, Lombardi S (1995) Evidence for radon transport by carrier gas through faulted clays in Italy. J Radioanal Nucl Chem 193(2):291–300CrossRefGoogle Scholar
  8. 8.
    Gorczyca Z, Rozanski K, Kuc T, Michalec B (2003) Seasonal variability of the soil CO2 flux and its isotopic composition in southern Poland. Nukleonika 48(4):187–196Google Scholar
  9. 9.
    Hirsch A, Trumbore SE, Goulden ML (2003) Direct measurement of the deep soil respiration accompanying seasonal thawing of a boreal forest soil. J Geophys Res 108(D3):8221–8231Google Scholar
  10. 10.
    Vaughn LJS, Torn MS (2018) Radiocarbon measurements of ecosystem respiration and soil pore-space CO2 in Utqiaġvik (Barrow), Alaska. Earth Syst Sci Data 10:1943–1957CrossRefGoogle Scholar
  11. 11.
    Gao Z, Lenschow DH, He Z, Zhou M (2009) Seasonal and diurnal variations in moisture, heat and CO2 fluxes over a typical steppe prairie in Inner Mongolia, China. Hydrol Earth Sci 13:987–998CrossRefGoogle Scholar
  12. 12.
    Ryzhakova NK (2014) A new method for estimating the coefficients of diffusion and emanation of radon in soil. J Environ Radioact 135:63–66CrossRefGoogle Scholar
  13. 13.
    Vaupotič J, Gregorič A, Kobal I, Žvab P, Kozak K, Maqur J, Kochowska E, Grządziel D (2010) Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia. Nat Hazards Earth Syst Sci 10:895–899CrossRefGoogle Scholar
  14. 14.
    Fujiyoshi R, Kinoshita M, Sawamura S (2005) Variation of 222Rn activity concentration in soil gas at a site in Sapporo, Japan. Environ Geochem Health 27:539–547.  https://doi.org/10.1007/s10653-005-7569-4 CrossRefPubMedGoogle Scholar
  15. 15.
    Fujiyoshi R, Satake Y, Sumiyoshi T (2009) Depth profiles of potassium and its isotope ratio (40K/K) in several forest soils. J Radioanal Nucl Chem 281:553–561.  https://doi.org/10.1007/s10967-009-0036-4 CrossRefGoogle Scholar
  16. 16.
    Fujiyoshi R, Kinoshita M, Sawamura S (2010) Variation of 222Rn activity concentration in soil gas at a site in Sapporo, Japan. Environ Geochem Health 27:539–547.  https://doi.org/10.1007/s10653-005-7569-4 CrossRefGoogle Scholar
  17. 17.
    Fujiyoshi R, Okabayashi M, Sakuta Y, Okamoto K, Sumiyoshi T, Kobal I, Vaupotič J (2013) Soil radon in winter months under snowpack in Hokkaido, Japan. Environ Earth Sci 70:1159–1167CrossRefGoogle Scholar
  18. 18.
    Japanese Society of Soil Science and Plant Nutrition (1997) Analytical methods in soil environment. In: Konno T (ed) Hakuyusha Japan (in Japanese) Google Scholar
  19. 19.
    Nakamura T, Okamoto K, Umegaki K, Fujiyoshi R (2016) Soil CO2 monitoring under a cool-temperate forest site in winter in Hokkaido, Japan. In: Abstract 100 second international conference on radioecological concentration processes (50 years later) Seville Spain, Nov. 6, 2016Google Scholar
  20. 20.
    Merbold L, Ziegler W, Mukelabai MM, Kutsch WL (2011) Spatial and temporal variation of CO2 efflux along a disturbance gradient in a miombo woodland in Western Zambia. Biogeosci 8:147–164.  https://doi.org/10.5194/bg-8-147-2011 CrossRefGoogle Scholar
  21. 21.
    Lankreijer HJM, Lindroth A, Strőmgren M, Kulmala L, Pumpanen J (2009) Forest floor CO2 flux measurements with a dark-light chamber. Biogeosci Dicuss 6:9301–9329CrossRefGoogle Scholar
  22. 22.
    Davidson EA, Savage KE, Trumbore SE, Borken W (2006) Vertical partitioning of CO2 production within a temperate forest soil. Global Change Biol 12:944–956.  https://doi.org/10.1111/j.1365-2486.2006.01142 CrossRefGoogle Scholar
  23. 23.
    Japan Meteorological Agency, https://www.jma.go.jp. Accessed Mar 31 2016
  24. 24.
    Onho M, Okamoto K, Umegaki K, Fujiyoshi R (2016) Results of simultaneous monitoring of soil 222Rn and moisture at different depths in a forest site in Fukushima Prefecture, Japan. J Radioanal Nucl Chem 310:1013–1020.  https://doi.org/10.1007/s10967-016-4946-7 CrossRefGoogle Scholar
  25. 25.
    Müllerová M, Holy K, Blahušiak P, Bulko M (2018) Study of radon exhalation from the soil. J Radioanal Nucl Chem 315(2):237–241CrossRefGoogle Scholar
  26. 26.
    Stuiver M, Polach HA (1997) Radiocarbon 1997 discussion reporting of 14C data. Radiocarbon 19(3):355–363CrossRefGoogle Scholar
  27. 27.
    Mayorga E, Aufdenkampe AK, Masiell CA, Krusche AV, Hedges JI, Auay PD et al (2005) Young organic matter a source of carbon dioxide outgassing from Amazon Rivers. Nature 436(28):528–541.  https://doi.org/10.1038/nature04555 CrossRefGoogle Scholar
  28. 28.
    Hao LC, Nitta M, Fujiyoshi R, Sumiyoshi T, Tao CV (2013) Radiocesium fallout in surface soil of Tomakomai experimental Forest in Hokkaido due to the Fukushima nuclear accident. Water Air Soil Pollut 224:1428–1436.  https://doi.org/10.1007/s11270-012-1428-6 CrossRefGoogle Scholar
  29. 29.
    Dörr H, Münnich KO (1998) Annual variations of the 14C content of soil CO2. Radiocarbon 28(2A):338–345CrossRefGoogle Scholar
  30. 30.
    van der Voort TS, Mannu U, Hagedorn F, McIntyre C, Walthert L, Schleppi P, Haghipour N, Eglinton TI (2018) Dynamics of deep soil carbon-insights from 14C time-series across a climatic gradient. Biogeosci Discuss.  https://doi.org/10.5194/bg-2018-361 CrossRefGoogle Scholar
  31. 31.
    Phillips CL, McFarlane KJ, Risk D, Desai AR (2013) Biological and physical influences on soil 14CO2 seasonal dynamics in a temperate hardwood forest. Biogeosci 10:7999–8012CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Ryoko Fujiyoshi
    • 1
    Email author
  • Taichi Nakamura
    • 1
  • Bor Krajnc
    • 2
  • Nives Ogrinc
    • 2
  • Janja Vaupotič
    • 2
  1. 1.Faculty of EngineeringHokkaido UniversitySapporoJapan
  2. 2.Department of Environmental SciencesJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations