Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 519–532 | Cite as

Grafting of quaternary ammonium groups for uranium(VI) recovery: application on natural acidic leaching liquor

  • Mohammed F. HamzaEmail author


Grafting of quaternary ammonium group is the main goal of this research for uranium recovery. The sorbent was investigated by FTIR, SEM–EDX, elemental analysis, thermogravemetric and XPS analyses, it shows high and fast loading performance (176.49 mg U g−1), the total equilibrium reached within 25 min, fitted by first order rate equation and Sips model for sorption kinetics and isotherms respectively. Complete desorption achieved after 30 min by 1.0 M NaCl in 0.1 M H2SO4. Sorption/desorption was measured after 10 cycles without significant loss in the capacity. Finally, the sorbent applied for uranium recovery of leaching solution from sulfuric acid on gibbsite bearing shale ore materials.

Graphic abstract


Uranium Silica gel Quaternary ammonium sorbent Uptake kinetics Sorption isotherms 



This work was supported by the Egyptian Nuclear Materials Authority. Special dedication is given to memory of Prof. Dr. N. El-Hazek and Prof. Dr. Mohamed Abdel Hakam.

Supplementary material

10967_2019_6729_MOESM1_ESM.docx (246 kb)
Supplementary material 1 (DOCX 246 kb)


  1. 1.
    Choi J, Lee JY, Yang J-S (2009) Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. J Hazard Mater 161(1):157–162PubMedGoogle Scholar
  2. 2.
    Rogner H-H, Toth FL, McDonald A (2010) Judge nuclear on its merits. Atw Internationale Zeitschrift fuer Kernenergie 56(12):761–763Google Scholar
  3. 3.
    Lottering M, Lorenzen L, Phala N, Smit J, Schalkwyk G (2008) Mineralogy and uranium leaching response of low grade South African ores. Miner Eng 21(1):16–22Google Scholar
  4. 4.
    Wang X, Liu Y, Sun Z, Li J, Chai L, Min X, Guo Y, Li P, Zhou Z (2017) Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes. J Radioanal Nucl Chem 314(1):251–258Google Scholar
  5. 5.
    Gajda D, Kiegiel K, Zakrzewska-Koltuniewicz G, Chajduk E, Bartosiewicz I, Wolkowicz S (2015) Mineralogy and uranium leaching of ores from Triassic Peribaltic sandstones. J Radioanal Nucl Chem 303(1):521–529PubMedGoogle Scholar
  6. 6.
    Smirnov AL, Titova SM, Rychkov VN, Bunkov GM, Semenishchev VS, Kirillov EV, Poponin NN, Svirsky IA (2017) Study of scandium and thorium sorption from uranium leach liquors. J Radioanal Nucl Chem 312(2):277–283Google Scholar
  7. 7.
    Wang Y-D, Li G-Y, Ding D-X, Zhang Z-Y, Chen J, Hu N, Li L (2015) Column leaching of uranium ore with fungal metabolic products and uranium recovery by ion exchange. J Radioanal Nucl Chem 304(3):1139–1144Google Scholar
  8. 8.
    Rashidi A, Roosta-Azad R, Safdari S (2014) Optimization of operating parameters and rate of uranium bioleaching from a low-grade ore. J Radioanal Nucl Chem 301(2):341–350Google Scholar
  9. 9.
    Shatalov V, Skorovarov D, Smirnov I (1999) Development of advanced technology in the hydrometallurgy of uranium. At Energ 86(5):311–316Google Scholar
  10. 10.
    Brown J, Fleming C (2010) The re-emergence of resin in pulp with strong base resins as a low cost, technically viable process for the recovery of uranium. SGS Miner Ser Tech Paper 1–10Google Scholar
  11. 11.
    Van Tonder D (2012) Comparison of resin-in-pulp and direct precipitation for recovery of uranium in alkaline leach circuits. 3(2):131–139Google Scholar
  12. 12.
    El-Azony K, Qaim S (2007) Anion-exchange and solvent extraction studies on the separation of radioiodine with particular reference to the production of 123I via proton irradiation of 123Te metal target. J Radioanal Nucl Chem 275(2):275–284Google Scholar
  13. 13.
    Grate J (2001) Extractive scintillating resin for 99Tc quantification in aqueous solutions. J Radioanal Nucl Chem 249(1):181–189Google Scholar
  14. 14.
    Suzuki T, Fujii Y, Yan W, Mimura H, Koyama S-i, Ozawa M (2009) Adsorption behavior of VII group elements on tertiary pyridine resin in hydrochloric acid solution. J Radioanal Nucl Chem 282(2):641–644Google Scholar
  15. 15.
    Nogami M, Fujii Y, Sugo T (1996) Radiation resistance of pyridine type anion exchange resins for spent fuel treatment. J Radioanal Nucl Chem 203(1):109–117Google Scholar
  16. 16.
    Aldabbgh S, Dybczynski R (1985) Ion exchange behaviour of 18 elements on amphoteric resin Retardion 11A8 in ammonium chloride, NH4Cl + NH3 and NH4Cl + HCl media. J Radioanal Nucl Chem 92(1):37–50Google Scholar
  17. 17.
    Samczyński Z, Dybczyński R (2002) The use of Retardion 11A8 amphoteric ion exchange resin for the separation and determination of cadmium and zinc in geological and environmental materials by neutron activation analysis. J Radioanal Nucl Chem 254(2):335–341Google Scholar
  18. 18.
    Kellogg HH, Duby P (1972) Book review: the extractive metallurgy of uranium. RC MERRITT (Colorado School of Mines Research Institute, 1971) 576 pp. J Nucl Mater 44(3):350Google Scholar
  19. 19.
    Chen X, He L, Liu R, Zhang C, Liu B, Tang Y (2015) Effective uranium(VI) sorption from alkaline media using bi-functionalized silica-coated magnetic nanoparticles. RSC Adv 5(70):56658–56665Google Scholar
  20. 20.
    Sereni, Julian Gustavo Renzo (2016) Reference module in materials science and materials engineering; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure Process 1(1):1–13Google Scholar
  21. 21.
    Ghorbani Y, Montenegro MR (2016) Leaching behaviour and the solution consumption of uranium–vanadium ore in alkali carbonate–bicarbonate column leaching. Hydrometallurgy 161:127–137Google Scholar
  22. 22.
    Adel A-HA-R, Ibrahim EEA, Fadia YA, Mohammed FH (2010) Studies on the uptake of rare earth elements on polyacrylamidoxime resins from natural concentrate leachate solutions. J Dispers Sci Technol 31(8):1128–1135Google Scholar
  23. 23.
    Aly MM, Hamza MF (2013) A review: studies on uranium removal using different techniques: overview. J Dispers Sci Technol 34(2):182–213Google Scholar
  24. 24.
    Lopez-Ramon MV, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F (1999) On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37(8):1215–1221Google Scholar
  25. 25.
    Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens 24:1–39Google Scholar
  26. 26.
    Chen H, Wang A (2009) Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite. J Hazard Mater 165(1–3):223PubMedGoogle Scholar
  27. 27.
    Rajaei GE, Aghaie H, Zare K, Aghaie M (2013) Adsorption of Cu(II) and Zn(II) ions from aqueous solutions onto fine powder of Typha latifolia L. root: kinetics and isotherm studies. Res Chem Intermed 39(8):3579–3594Google Scholar
  28. 28.
    Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465Google Scholar
  29. 29.
    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1402Google Scholar
  30. 30.
    Dragan ES, Loghin DFA, Cocarta AI (2014) Efficient sorption of Cu2+ by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads. ACS Appl Mater Interfaces 6(19):16577–16592. CrossRefPubMedGoogle Scholar
  31. 31.
    Zhao Z, Xie X, Wang Z, Tao Y, Niu X, Huang X, Liu L, Li Z (2016) Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: an efficiency continuous cell-recycle fermentation system for lactic acid production. J Biosci Bioeng 121(6):645–651PubMedGoogle Scholar
  32. 32.
    Liu N, Assink RA, Smarsly B, Brinker CJ (2003) Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively chargeable–NH2 groups. Chem Commun 10:1146–1147Google Scholar
  33. 33.
    Zhang X, Guan R-F, Wu D-Q, Chan K-Y (2005) Enzyme immobilization on amino-functionalized mesostructured cellular foam surfaces, characterization and catalytic properties. J Mol Catal B Enzym 33(1–2):43–50Google Scholar
  34. 34.
    Lu S, Chen L, Hamza MF, He C, Wang X, Wei Y, Guibal E (2019) Amidoxime functionalization of a poly (acrylonitrile)/silica composite for the sorption of Ga (III): application to the treatment of Bayer liquor. Chem Eng J 368:459–473Google Scholar
  35. 35.
    Galwey AK, Brown ME (1999) Thermal decomposition of ionic solids: chemical properties and reactivities of ionic crystalline phases, vol 86. Studies in physical and theoretical chemistry, 1st edn. Elsevier, AmsterdamGoogle Scholar
  36. 36.
    Hamza MF, Abdel-Rahman AAH, Ramadan S, Raslan H, Wang S, Vincent T, Guibal E (2017) Functionalization of magnetic chitosan particles for the sorption of U(VI), Cu(II) and Zn(II)—hydrazide derivative of glycine-grafted chitosan. Materials 10(5):539–560. CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kyzas GZ, Siafaka PI, Pavlidou EG, Chrissafis KJ, Bikiaris DN (2015) Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem Eng J 259:438–448Google Scholar
  38. 38.
    Hamza MF, Roux JC, Guibal E (2018) Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles. Chem Eng J 344:124–137Google Scholar
  39. 39.
    Fang W, Yabin W, Yanni L (2010) Study of influencing factors and the mechanism of preparing triazinedithiol polymeric nanofilms on aluminum surfaces. Int J Mol Sci 11(11):4715–4725Google Scholar
  40. 40.
    Fantauzzi M, Elsener B, Atzei D, Rigoldi A, Rossi A (2015) Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv 5(93):75953–75963Google Scholar
  41. 41.
    Zheng X, Pan X, Nie Z, Yang Y, Liu L, Yang H, Xia J (2018) Combined DFT and XPS investigation of cysteine adsorption on the pyrite (1 0 0) surface. Minerals 8(9):366Google Scholar
  42. 42.
    Huang Z, Li Z, Zheng L, Zhou L, Chai Z, Wang X, Shi W (2017) Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chem Eng J 328:1066–1074Google Scholar
  43. 43.
    Gładysz-Płaska A, Grabias E, Majdan M (2018) Simultaneous adsorption of uranium(VI) and phosphate on red clay. Prog Nucl Energy 104:150–159Google Scholar
  44. 44.
    Hamza MF, Wei Y, Mira H, Adel A-H, Guibal E (2019) Synthesis and adsorption characteristics of grafted hydrazinyl amine magnetite-chitosan for Ni(II) and Pb(II) recovery. Chem Eng J 362:310–324Google Scholar
  45. 45.
    Zhao M, Cao Y, Liu X, Deng J, Li D, Gu H (2014) Effect of nitrogen atomic percentage on N+-bombarded MWCNTs in cytocompatibility and hemocompatibility. Nanoscale Res Lett 9(1):142PubMedPubMedCentralGoogle Scholar
  46. 46.
    Yap W, Yunus WMM, Talib ZA, Yusof N (2011) X-ray photoelectron spectroscopy and atomic force microscopy studies on crosslinked chitosan thin film. Int J Phys Sci 6(11):2744–2749Google Scholar
  47. 47.
    Lindberg B, Maripuu R, Siegbahn K, Larsson R, Gölander C-G, Eriksson J (1983) ESCA Studies of heparinized and related surfaces: 1. Model surfaces on steel substrates. J Colloid Interface Sci 95(2):308–321Google Scholar
  48. 48.
    Kaufman D, Lower GW (1954) A summary report on the ion exchange process for the recovery of uranium. American Cyanamid Co., Atomic Energy Div., Raw Materials Development Lab., WinchesterGoogle Scholar
  49. 49.
    Venkatesan G, Pari S (2016) Growth of glycine ethyl ester hydrochloride and its characterizations. Phys B 501:26–33Google Scholar
  50. 50.
    Hamza MF, Abdel-Rahman AH (2015) Extraction studies of some hazardous metal ions using magnetic peptide resins. J Dispers Sci Technol 36(3):411–422Google Scholar
  51. 51.
    Coates J (2000) Interpretation of infrared spectra, a practical approach, In: Meyers RA (ed) Encyclopedia of analytical chemistry, John Wiley & Sons Ltd, Chichester, pp 10815–10837Google Scholar
  52. 52.
    Hosoba M, Oshita K, Katarina RK, Takayanagi T, Oshima M, Motomizu S (2009) Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automated-pretreatment system. Anal Chim Acta 639(1–2):51–56PubMedGoogle Scholar
  53. 53.
    Maheswari MA, Subramanian MS (2005) AXAD-16-3,4-dihydroxy benzoyl methyl phosphonic acid: a selective preconcentrator for U and Th from acidic waste streams and environmental samples. React Funct Polym 62(1):105–114. CrossRefGoogle Scholar
  54. 54.
    Solgy M, Taghizadeh M, Ghoddocynejad D (2015) Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: equilibrium, kinetics and thermodynamics study. Ann Nucl Energy 75:132–138. CrossRefGoogle Scholar
  55. 55.
    Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296(2):434–441. CrossRefPubMedGoogle Scholar
  56. 56.
    Ai L, Luo X, Lin X, Zhang S (2013) Biosorption behaviors of uranium(VI) from aqueous solution by sunflower straw and insights of binding mechanism. J Radioanal Nucl Chem 298(3):1823–1834. CrossRefGoogle Scholar
  57. 57.
    Lin W, Carboni M, Abney CW, Taylor-Pashow KML, Vivero-Escoto JL (2013) Uranium sorption with functionalized mesoporous carbon materials. Ind Eng Chem Res 52(43):15187–15197. CrossRefGoogle Scholar
  58. 58.
    Metilda P, Sanghamitra K, Gladis JM, Naidu GRK, Rao TP (2005) Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium(VI). Talanta 65(1):192–200. CrossRefPubMedGoogle Scholar
  59. 59.
    Semnani F, Asadi Z, Samadfam M, Sepehrian H (2012) Uranium(VI) sorption behavior onto amberlite CG-400 anion exchange resin: effects of pH, contact time, temperature and presence of phosphate. Ann Nucl Energy 48:21–24. CrossRefGoogle Scholar
  60. 60.
    Cao Q, Liu Y, Kong X, Zhou L, Guo H (2013) Synthesis of phosphorus-modified poly(styrene-co-divinylbenzene) chelating resin and its adsorption properties of uranium(VI). J Radioanal Nucl Chem 298(2):1137–1147. CrossRefGoogle Scholar
  61. 61.
    Liu H-J, Jing P-F, Liu X-Y, Du K-J, Sun Y-K (2016) Synthesis of beta-cyclodextrin functionalized silica gel and its application for adsorption of uranium(VI). J Radioanal Nucl Chem 310(1):263–270. CrossRefGoogle Scholar
  62. 62.
    Liu S, Yang Y, Liu T, Wu W (2017) Recovery of uranium(VI) from aqueous solution by 2-picolylamine functionalized polystyrene-co-maleic anhydride) resin. J Colloid Interface Sci 497:385–392. CrossRefPubMedGoogle Scholar
  63. 63.
    Guo X, Feng Y, Ma L, Gao D, Jing J, Yu J, Sun H, Gong H, Zhang Y (2017) Phosphoryl functionalized mesoporous silica for uranium adsorption. Appl Surf Sci 402:53–60. CrossRefGoogle Scholar
  64. 64.
    Jain VK, Handa A, Sait SS, Shrivastav P, Agrawal YK (2001) Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillinsemicarbazone. Anal Chim Acta 429(2):237–246. CrossRefGoogle Scholar
  65. 65.
    Rahmati A, Ghaemi A, Samadfam M (2012) Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin. Ann Nucl Energy 39(1):42–48. CrossRefGoogle Scholar
  66. 66.
    Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M (2013) Preparation of Fe3O4@C@layered double hydroxide composite for magnetic separation of uranium. Ind Eng Chem Res 52(30):10152–10159. CrossRefGoogle Scholar
  67. 67.
    Zou WH, Zhao L, Zhu L (2012) Efficient uranium(VI) biosorption on grapefruit peel: kinetic study and thermodynamic parameters. J Radioanal Nucl Chem 292(3):1303–1315. CrossRefGoogle Scholar
  68. 68.
    Hamza MF, Abdel-Rahman AAH, Guibal E (2018) Magnetic glutamine-grafted polymer for the sorption of U(VI), Nd(III) and Dy(III). J Chem Technol Biotechnol 93(6):1790–1806Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Nuclear Materials AuthorityEl-Maadi, CairoEgypt

Personalised recommendations