Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 3, pp 1469–1476 | Cite as

Mössbauer and photocatalytic studies of CaFe2O4 nanoparticle-containing aluminosilicate prepared from domestic waste simulated slag

  • A. S. Ali
  • S. Ishikawa
  • K. Nomura
  • E. Kuzmann
  • Z. Homonnay
  • A. Scrimshire
  • P. A. Bingham
  • S. Krehula
  • M. Ristić
  • S. Musić
  • S. KubukiEmail author
Article
  • 57 Downloads

Abstract

The relationship between local structure and visible-light activated photocatalytic effect of simulated domestic waste slag glass–ceramics (R-NaWSFe) was investigated. The largest pseudo-first-order rate constant of 9.75 × 10−3 min−1 was estimated for methylene blue decomposition test under the visible-light irradiation using R-NaWSFe with additional 30 mass% of Fe2O3 heat-treated at 900 °C for 100 min. The reason for the high photoactivity of this sample was mainly due to nanoparticles of CaFe2O4 and α-Fe2O3 confirmed by the Mössbauer spectrum measured at 77 K. It is concluded that the nanoparticles of magnetic components in silica are essential for exhibiting visible-light activated catalytic effect.

Keywords

57Fe Mössbauer spectroscopy Photocatalytic effect Visible-light Nanoparticles CaFe2O4 α-Fe2O3 

Notes

Acknowledgements

Some of the authors (ASA, SI, KN, and SK) express their gratitude for the financial support from Tokyo Human Resources Fund for City Diplomacy.

References

  1. 1.
    OECD (2010) Municipal waste. In: OECD Factbook 2010: economic, environmental and social statistics. OECD Publishing, Paris.  https://doi.org/10.1787/factbook-2010-en
  2. 2.
    OECD (2016) Municipal waste. In: OECD Factbook 2015–2016: economic, environmental and social statistics. OECD Publishing, Paris.  https://doi.org/10.1787/factbook-2015-en
  3. 3.
    Annual Report on the Environment (2018) The Sound Material-Cycle Society and Biodiversity in Japan. http://www.env.go.jp/en/wpaper/2018/pdf/07.pdf. Accessed 1 July 2019
  4. 4.
    Kubuki S, Kawakami N, Kamikawa T, Fukagawa M, Nishizumi T, Nishida T, Homonnay Z, Kuzmann E (2005) Corelationship between local structure and water purifying ability of iron-containing waste glasses. Hyperfine Interact. 166:429–436CrossRefGoogle Scholar
  5. 5.
    Kubuki S, Iwanuma J, Akiyama K, Homonnay Z, Kuzmann E, Nishida T (2013) Water cleaning ability and local structure of iron-containing soda-lime silicate glass. Hyperfine Interact 218:41–45CrossRefGoogle Scholar
  6. 6.
    Kubuki S, Iwanuma J, Takahashi Y, Akiyama K, Homonnay Z, Sinkó K, Kuzmann E, Nishida T (2014) Visible light-activated catalytic effect of iron-containing soda-lime silicate glass characterized by 57Fe-Mössbauer spectroscopy. J Radioanal Nucl Chem 301:1–7CrossRefGoogle Scholar
  7. 7.
    Iida Y, Akiyama K, Kobzi B, Sinkó K, Homonnay Z, Kuzmann E, Ristić M, Krehula S, Nishida T, Kubuki S (2015) Structural analysis and visible light-activated photocatalytic activity of iron-containing soda-lime aluminosilicate glass. J Alloys Compd 645:1–6CrossRefGoogle Scholar
  8. 8.
    Ishikawa S, Kobzi B, Sunakawa K, Nemeth S, Lengyel A, Kuzmann E, Homonnay Z, Nishida T, Kubuki S (2017) Visible-light activated photocatalytic effect of glass and glass-ceramic prepared by recycling waste slag with hematite. Pure Appl Chem 89(4):535–554CrossRefGoogle Scholar
  9. 9.
    Wakasa M, Kobayashi Y, Okano M (2006) Magnetic field effect on the photocatalytic reaction with TiO2 semiconductor film. Bull Soc Sci Photo Jpn 69(4):271–275 (in Japanese) Google Scholar
  10. 10.
    Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachrichten Gesell. 2:98–100 (in Germany) Google Scholar
  11. 11.
    Van der Wurde F (1967) Mössbaeur effect in α-Fe2O3. Physica Status Solidi (b) 17(1):417–432Google Scholar
  12. 12.
    Murad E, Johnston JH (1984) In: Long GJ (ed) Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol 2. Plenum Press, New York, pp 523–531Google Scholar
  13. 13.
    Hirabayashi D, Sakai Y, Yoshikawa T, Mochizuki K, Kojima Y, Suzuki K, Ohshita K, Watanabe Y (2006) Mössbauer characterization of calcium-ferrite oxides prepared by calcining Fe2O3 and CaO. Hyperfine Interact 167(1–3):809–813CrossRefGoogle Scholar
  14. 14.
    Matsumoto Y, Omae M, Sugiyama K, Sato EI (1987) New photocathode materials for hydrogen evolution: CaFe2O4 and Sr7Fe10O22. J Phys Chem 91(3):577–581CrossRefGoogle Scholar
  15. 15.
    Matsumoto Y, Sugiyama K, Sato EI (1988) Improvement of CaFe2O4 photocathode by doping with Na and Mg. J Solid State Chem 74(1):117–125CrossRefGoogle Scholar
  16. 16.
    Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4:432–449CrossRefGoogle Scholar
  17. 17.
    Iandolo B, Wickman B, Zorić I, Hellman A (2015) The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction. J Mater Chem A 3:16896–16912CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • A. S. Ali
    • 1
  • S. Ishikawa
    • 1
  • K. Nomura
    • 1
  • E. Kuzmann
    • 2
  • Z. Homonnay
    • 2
  • A. Scrimshire
    • 3
  • P. A. Bingham
    • 3
  • S. Krehula
    • 4
  • M. Ristić
    • 4
  • S. Musić
    • 4
  • S. Kubuki
    • 1
    Email author
  1. 1.Graduate School of ScienceTokyo Metropolitan UniversityHachi-OjiJapan
  2. 2.Institute of Chemistry, Eötvös Loránd UniversityBudapestHungary
  3. 3.Faculty of Science, Technology and ArtsSheffield Hallam UniversitySheffieldUK
  4. 4.Division of Materials ChemistryRuder Bosković InstituteZagrebCroatia

Personalised recommendations