Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 791–799 | Cite as

Copper hexacyanoferrate nanoparticle-decorated biochar produced from pomelo peel for cesium removal from aqueous solution

  • Qinqin Tao
  • Xu Zhang
  • Dejuan Huang
  • Guolin Huang
  • Jiali Fan
  • Hong Peng
  • Ying DaiEmail author
  • Krishnamoorthy Prabaharan


A microporous composite (CuHCF/PP600) for cesium removal was successfully prepared by copper hexacyanoferrate (CuHCF) dispersed into a biochar (pomelo peel was carbonized at 600 °C). In comparison with CuHCF/PP600 and pure CuHCF, it was showed that CuHCF/PP600 had better performances on sedimentation and cesium removal. The maximum removal efficiency of cesium by the composite is 30.06 mg/g (at pH 7.0). Adsorption kinetic and isotherm of CuHCF/PP600 were followed to Langmuir isotherm model and pseudo-second-order kinetic model respectively. Thermodynamic analysis shows that the adsorption process was endothermic. The removal efficiency of Cs+ was down less than 5% in the presence of Na+, K+, Mg2+. The results indicate that CuHCF/PP600 is a promising adsorbent for cesium removal from aqueous solution.


Cesium Biochar Adsorption Copper hexacyanoferrate 



Financial supports from National Natural Science Foundation of China (Nos. 11705060, 11605027, 41867063, 21866005), Natural Science Foundation of Jiangxi Province (No. 20161BAB213086), and the Project of the Jiangxi Provincial Department of Education (Nos. GJJ170400, GJJ180372) are gratefully acknowledged.


  1. 1.
    Yang SB, Han C, Wang XK, Nagatsu M (2014) Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites. J Hazard Mater 274:46–52PubMedCrossRefGoogle Scholar
  2. 2.
    Tao QQ, Zhang X, Prabaharan K, Dai Y (2019) Separation of cesium from wastewater with copper hexacyanoferrate film in an electrochemical system driven by microbial fuel cells. Biores Technol 278:456–459CrossRefGoogle Scholar
  3. 3.
    Zhao XD, Meng QH, Chen G, Wu ZH, Sun GG, Yu GB, Sheng LS, Weng HQ, Lin MZ (2018) Anacid-resistant magnetic Nb-substituted crystalline silicotitanate for selective separation of strontium and/or cesium ions from aqueous solution. Chem Eng J 352:133–142CrossRefGoogle Scholar
  4. 4.
    Alamudy HA, Cho K (2018) Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid. Chem Eng J 349:595–602CrossRefGoogle Scholar
  5. 5.
    Jin J, Li SW, Peng XQ, Liu W, Zhang CL, Yang Y, Han LF, Du ZW, Sun K, Wang XK (2018) HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresour Technology 256:247–253CrossRefGoogle Scholar
  6. 6.
    Khandaker S, Toyohara Y, Kamida S, Kuba T (2018) Effective removal of cesium from wastewater solutions using an innovative low-cost adsorbent developed from sewage sludge molten slag. J Environ Manage 222:304–315PubMedCrossRefGoogle Scholar
  7. 7.
    Faghihian H, Iravani M, Moayed M, Ghannadimaragheh M (2013) Preparation of a novel PAN-zeolite nanocomposite for removal of Cs + and Sr2 + from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. Chem Eng J 222(1):41–48CrossRefGoogle Scholar
  8. 8.
    Xia M, Zheng X, Du M, Wang Y, Ding A, Dou J (2018) The adsorption of Cs+ from wastewater using lithium-modified montmorillonite caged in calcium alginate beads. Chemosphere 203:271–280PubMedCrossRefGoogle Scholar
  9. 9.
    Xiao CL, Silver MA, Wang SA (2017) Metal-organic frameworks for radionuclide sequestration from aqueous solution: a brief overview and outlook. Dalton Trans 46(47):16381–16386PubMedCrossRefGoogle Scholar
  10. 10.
    Yang HJ, Luo M, Luo L, Wang HX, Hu DD, Lin J, Wang X, Wang YL, Wang SA, Bu XH, Feng PY, Wu T (2016) Highly selective and rapid uptake of radionuclide cesium based on robust zeolitic chalcogenide via stepwise ion-exchange strategy. Chem Mater 28(23):8774–8780CrossRefGoogle Scholar
  11. 11.
    Alby D, Charnay C, Marc H, Prelot B, Zajac J (2018) Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity—a review. J Hazard Mater 344:511–530PubMedCrossRefGoogle Scholar
  12. 12.
    Zheng YH, Qiao JH, Yuan JH, Shen JF, Aj Wang, Niu L (2017) Electrochemical removal of radioactive cesium from nuclear waste using the dendritic copper hexacyanoferrate/carbon nanotube hybrids. Electrochim Acta 257:172–180CrossRefGoogle Scholar
  13. 13.
    Feng SS, Li XD, Ma F, Liu RF, Fu GL, Xing S, Yue XL (2016) Prussian blue functionalized microcapsules for effective removal of cesium in a water environment. RSC Adv 6(41):34399–34410CrossRefGoogle Scholar
  14. 14.
    Jia ZQ, Cheng XX, Guo YX, Tu LY (2017) In-situ preparation of iron(III) hexacyanoferrate nano-layer on polyacrylonitrile membranes for cesium adsorption from aqueous solutions. Chem Eng J 325:513–520CrossRefGoogle Scholar
  15. 15.
    Kim Y, Kim I, Lee TS, Lee E, Lee KJ (2018) Porous hydrogel containing Prussian blue nanoparticles for effective cesium ion adsorption in aqueous media. J Ind Eng Chem 60:465–474CrossRefGoogle Scholar
  16. 16.
    Zhao T, Yao Y, Li DR, Wu F, Zhang CZ, Gao B (2018) Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II). Sci Total Environ 640–641:73–79PubMedCrossRefGoogle Scholar
  17. 17.
    Zhu JH, Liu Q, Li ZS, Liu JY, Zhang HS, Li RM, Wang J, Emelchenko GA (2017) Recovery of uranium(VI) from aqueous solutions using a modified honeycomb-like porous carbon material. Dalton Trans 46(2):420–429PubMedCrossRefGoogle Scholar
  18. 18.
    Liu JY, Wang ZX, Li HY, Hu CW, Raymer P, Huang QG (2018) Effect of solid state fermentation of peanut shell on its dye adsorption performance. Biores Technol 249:307–314CrossRefGoogle Scholar
  19. 19.
    Mahmood T, Aslam M, Naeem A, Ali R, Saddique T (2018) Equilibrium, kinetics, mechanism and thermodynamics studies of As(III) adsorption from aqueous solution using iron impregnated used tea. Desalin Water Treat 104:135–148CrossRefGoogle Scholar
  20. 20.
    Yu Y, An Q, Zhou Y, Deng SM, Miao Y, Zhao B, Yang L (2019) Highly synergistic effects on ammonium removal by the co-system of Pseudomonas stutzeri XL-2 and modified walnut shell biochar. Biores Technol 280:239–246CrossRefGoogle Scholar
  21. 21.
    Chang SQ, Chang L, Han W, Li Z, Dai YD, Zhang HQ (2018) In situ green production ofprussian blue/natural porous framework nanocomposites for radioactive Cs+ removal. J Radioanal Nucl Chem 316(1):209–219CrossRefGoogle Scholar
  22. 22.
    Zhu XD, Liu YC, Qian F, Zhou C, Zhang SC, Chen JM (2014) Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Biores Technol 154:209–214CrossRefGoogle Scholar
  23. 23.
    Kulesza PJ, Malik MA, Denca A, Strojek JW (1996) In situ FT-IR/ATR spectroelectrochemistry of prussian blue in the solid state. Anal Chem 68(14):2442–2446CrossRefGoogle Scholar
  24. 24.
    Chen R, Asai M, Fukushima C, Ishizaki M, Kurihara M, Arisaka M, Nankawa T, Watanabe M, Kawamoto T, Tanaka H (2015) Column study on electrochemical separation of cesium ions from wastewater using copper hexacyanoferrate film. J Radioanal Nucl Chem 303(2):1491–1495CrossRefGoogle Scholar
  25. 25.
    Han Y, Boateng AA, Qi PX, Lima IM, Chang J (2013) Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J Environ Manage 118(2):196–204PubMedCrossRefGoogle Scholar
  26. 26.
    Wahab MA, Jellali S, Jedidi N (2010) Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Biores Technol 101(14):5070–5075CrossRefGoogle Scholar
  27. 27.
    Zhang M, Gao B, Varnoosfaderani SS, Hebard AF, Yao Y, Inyang M (2013) Preparation and characterization of a novel magnetic biochar for arsenic removal. Biores Technol 130:457–462CrossRefGoogle Scholar
  28. 28.
    Kim Y, Kim YK, Kim S, Harbottle D, Lee JW (2017) Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption. Chem Eng J 313:1042–1050CrossRefGoogle Scholar
  29. 29.
    Niu YL, Li K, Ying DW, Wang YL, Jia JP (2017) Novel recyclable adsorbent for the removal of copper(II) and lead(II) from aqueous solution. Biores Technol 229:63–68CrossRefGoogle Scholar
  30. 30.
    Avramenko V, Bratskaya S, Zheleznov V, Sheveleva I, Voitenko O, Sergienko V (2011) Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metals ferrocyanides. J Hazard Mater 186(2–3):1343–1350PubMedCrossRefGoogle Scholar
  31. 31.
    Hu BY, Fugetsu B, Yu HW, Abe Y (2012) Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium. J Hazard Mater 217–218:85–91PubMedGoogle Scholar
  32. 32.
    Sasaki T, Tanaka S (2012) Magnetic separation of cesium ion using Prussian blue modified magnetite. Chem Lett 41(1):32–34CrossRefGoogle Scholar
  33. 33.
    Su JY, Jin GP, Chen T, Liu XD, Chen CN, Tian JJ (2017) The characterization andapplication of prussian blue at graphene coated carbon fibers in a separated adsorption and electrically switched ion exchange desorption processes of cesium. Electrochim Acta 230:399–406CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Qinqin Tao
    • 1
    • 2
  • Xu Zhang
    • 2
  • Dejuan Huang
    • 1
  • Guolin Huang
    • 1
  • Jiali Fan
    • 1
  • Hong Peng
    • 1
  • Ying Dai
    • 1
    Email author
  • Krishnamoorthy Prabaharan
    • 1
  1. 1.State Key Laboratory of Nuclear Resources and EnvironmentEast China University of TechnologyNanchangChina
  2. 2.School of Civil Engineering and ArchitectureEast China Jiaotong UniversityNanchangChina

Personalised recommendations