Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 743–750 | Cite as

Cloud point extractive spectrophotometric method for determination of uranium in raffinate streams during spent nuclear fuel reprocessing

  • Chandan Mukhopadhyay
  • M. Suba
  • D. Sivakumar
  • K. Dhamodharan
  • R. V. Subba RaoEmail author


A cloud point extractive spectrophotometric method was developed for the determination of uranium in raffinate streams. Uranium was extracted to a tri n-octyl phosphine oxide in o-Xylene from raffinate. Uranium present in organic phase was analyzed by spectrophotometry after cloud point extraction of U-PAR (4-(2-Pyridylazo) resorcinol) complex to cetyl trimethyl ammonium bromide—Triton-X-100 medium. The molar absorption coefficient for uranium complex was found to be 2.2 × 104 l mol−1 cm−1. The relative standard deviation for the determination of uranium was found to be 3.9% and with a minimum detection limit of 2 µg uranium per aliquot.


Uranium Cloud point extraction Spectrophotometry 4-(2-Pyridylazo) resorcinol (PAR) 



The Authors are thankful to Dr A. Ravisankar, Director, Reprocessing Group, IGCAR for his constant encouragement throughout the work. The valuable contributions during experimental part from Mrs. V. Rekha, Mrs. G. Pritha and Mrs. V. Varalakshmi of Chemical Laboratory, Reprocessing Group are greatly acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Natarajan R, Baldev R (2007) Fast reactor fuel reprocessing technology in India. J Nucl Sci Technol 44(3):393–397CrossRefGoogle Scholar
  2. 2.
    Natarajan R (1998) IANCAS Bull 14(2):27Google Scholar
  3. 3.
    Bendict M, Pigford TM, Levi HW (1981) Nuclear chemical Engineering, Chap 10, 2nd edn. McGraw Hill Book Co., New YorkGoogle Scholar
  4. 4.
    Boomer DW, Powell MJ (1987) Determination of uranium in environmental samples using inductively coupled plasma mass spectrometry. Anal Chem 59:2810–2813PubMedCrossRefGoogle Scholar
  5. 5.
    Page AG, Gedbole SV, Hadraswala KH, Kulkarni MJ, Mallapurkar VS, Joshi BD (1983) Determination of ultra-trace amount of uranium by ICP-AES technique. Anal Lett 16:1005–1012CrossRefGoogle Scholar
  6. 6.
    Premadas A, Srivastava PK (1999) Rapid laser fluorometric method for the determination of uranium in soil, ultrabasic rock, plant ash, coal fly ash and red mud samples. J Radioanal Nucl Chem 242(1):23–27CrossRefGoogle Scholar
  7. 7.
    Jackson PE, Carnevale J, Fuping H, Haddad PR (1994) Determination of thorium and uranium in mineral sands by ion chromatography. J Chromatogr A 671:181–191CrossRefGoogle Scholar
  8. 8.
    Florence TM, Farrar Y (1963) Spectrophotometric determination of uranium with 4-(2-Pyridylazo) resorcinol. Anal Chem 35:1613–1616CrossRefGoogle Scholar
  9. 9.
    Rao RVS, Damodaran K, Kumar GS, Ravi TN (2000) Determination of uranium and plutonium in high active solutions by extractive spectrophotometry. J Radioanal Nucl Chem 246(2):433–435CrossRefGoogle Scholar
  10. 10.
    Florence TM, Johnson DA, Farrar YJ (1969) Spectrophotometric determination of uranium(V1) with 2-(2-Pyridylazo)-5-diethylaminophenol. Anal Chem 41(12):1652–1654CrossRefGoogle Scholar
  11. 11.
    Johnson DA, Florence TM (1971) Spectrophotometric determination of uranium(V1) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Anal Chim Acta 53:73–79CrossRefGoogle Scholar
  12. 12.
    Das SK, Kedari CS, Tripathi SC (2010) Spectrophotometric determination of trace amount of uranium(VI) in different aqueous and organic streams of nuclear fuel processing using 2-(5-bromo-2-pyridylazo-5-diethylaminophenol). J Radioanal Nucl Chem 285:675–681CrossRefGoogle Scholar
  13. 13.
    Muhammad HK, Peter W, Nick E (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63(7):1165–1169CrossRefGoogle Scholar
  14. 14.
    Madrakian T, Afkhami A, Mousavi A (2007) Spectrophotometric determination of trace amounts of uranium(VI) in water samples after mixed micelle-mediated extraction. Talanta 71:610–614PubMedCrossRefGoogle Scholar
  15. 15.
    Saha A, Deb SB, Sarkar A, Saxena MK, Tomar BS (2016) Simultaneous preconcentration of uranium and thorium in aqueous samples using cloud point extraction. RSC Adv 6:20109–20119CrossRefGoogle Scholar
  16. 16.
    Shemirani F, Rahnama Kozani R, Reza Jamali M, Assadi Y, Mohammad Reza Milani S (2005) Micelle-mediated extraction for direct spectrophotometric determination of trace uranium(VI) in water samples. Sep Sci Technol 40(12):2527–2537CrossRefGoogle Scholar
  17. 17.
    El Ashraf S, Mostafa MH (2009) Developed method for low concentration determination of uranium. Eurasian J Anal Chem 4(1):36–45Google Scholar
  18. 18.
    Favre-Réguillon A, Murat D, Cote G, Foos J, Draye M (2006) Temperature-induced surfactant mediated pre-concentration of uranium assisted by complexation. J Chem Technol Biotechnol 81(12):1872–1876CrossRefGoogle Scholar
  19. 19.
    Constantinou E, Pashadilis I (2010) Uranium determination in water samples by liquid scintillation counting after cloud point extraction. J Radioanal Nucl Chem 286(2):461–465CrossRefGoogle Scholar
  20. 20.
    Ghasemi JB, Hashemi B, Shamsipur M (2012) Simultaneous spectrophotometric determination of uranium and zirconium using cloud point extraction and multivariate methods. J Iran Chem Soc 9:257–262CrossRefGoogle Scholar
  21. 21.
    Ali Sarafraz Yazdi (2011) Surfactant-based extraction methods. Trends Anal Chem 30(6):918–929CrossRefGoogle Scholar
  22. 22.
    de Bezerra MA, Arruda MAZ, Ferreira SLC (2005) Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques: a review. Appl Spectrosc Rev 40(4):269–299CrossRefGoogle Scholar
  23. 23.
    Ojeda CB, Rojas FS (2009) Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview. Anal Bioanal Chem 394(3):759–782CrossRefGoogle Scholar
  24. 24.
    Niazi A, Momeni-Isfahani T, Ahmari Z (2009) Spectrophotometric determination of mercury in water samples after cloud point extraction using nonionic surfactant Triton X-114. J Hazard Mater 165(1–3):1200–1203PubMedCrossRefGoogle Scholar
  25. 25.
    Ferreira HS, de Bezerra MA, Costa Ferreira SL (2006) A pre-concentration procedure using cloud point extraction for the determination of uranium in natural water. Microchim Acta 154:163–167CrossRefGoogle Scholar
  26. 26.
    Labrecque C, Potvin S, Whitty-Léveillé L, Larivière D (2013) Cloud point extraction of uranium using H2DEH[MDP] in acidic conditions. Talanta 107:284–291PubMedCrossRefGoogle Scholar
  27. 27.
    Saha A, Sanyal K, Rawat N, Deb SB, Saxena MK, Tomar BS (2017) Selective micellar extraction of ultratrace levels of uranium in aqueous samples by task specific ionic liquid followed by its detection employing total reflection x-ray fluorescence spectrometry. Anal Chem 89:10422–10430PubMedCrossRefGoogle Scholar
  28. 28.
    Saha A, Debnath T, Neogy S, Ghosh HN, Saxena MK, Tomar BS (2017) Micellar extraction assisted fluorometric determination of ultratrace amount of uranium in aqueous samples by novel diglycolamide-capped quantum dot nanosensor. Sens Actuat B 253:592–602CrossRefGoogle Scholar
  29. 29.
    Subbuthai S, Ananthanarayanan R, Sahoo P, Nageswara Rao A, Rao RVS (2011) Feasibility studies for the detection of third phase during reprocessing of fast reactor fuel. J Radioanal Nucl Chem 292(2):879–883CrossRefGoogle Scholar
  30. 30.
    Alam MS, Nareshkumar V, Vijayakumar N, Madhavan K, Mandal AB (2014) Effect of additives on the cloud point of mixed surfactant (non-ionic Triton X-114 + cationic gemini 16-6-16) solutions. J Mol Liq 194:206–211CrossRefGoogle Scholar
  31. 31.
    Guo Chun-Yan, Wang Jin, Hou Yong, Zhao Yong-Ming, Shen Li-Xia, Zhang Dan-Shen (2013) Orthogonal test design for optimizing the extraction of total flavonoids from Inula helenium. Pharmacogn Mag 9:192–195PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Chandan Mukhopadhyay
    • 1
  • M. Suba
    • 2
  • D. Sivakumar
    • 1
  • K. Dhamodharan
    • 1
  • R. V. Subba Rao
    • 1
    • 3
    Email author
  1. 1.Process and Radiochemistry DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Reprocessing Research and Development Division, Reprocessing GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  3. 3.Homi Bhabha National InstituteIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations