Journal of Radioanalytical and Nuclear Chemistry

, Volume 321, Issue 3, pp 1019–1025 | Cite as

Effects of gamma and electron radiation on chemical composition and some phyto-chemical properties of whole flaxseed

  • M. H. Beheshti Moghadam
  • M. Rezaei
  • M. BehgarEmail author
  • H. Kermanshahi


The effects of gamma (GR; 0, 5, 10, 15 and 20 kGy) and electron irradiation (ER; 0, 5, 10, 15 and 20 kGy) on proximate compositions, fatty acid profiles, cyanid, total phenolic compounds, flavonoids and γ-tocopherols (γ-toc) contents of flaxseed (FS) were investigated. Irradiation had no effect on the proximate composition, cyanid content and fatty acid profiles of FS. Both GR and ER at high applied doses decreased (P < 0.05) total phenolic compounds and flavonoid content of FS. All applied doses of GR and ER decreased (P < 0.05) γ-toc content of FS compared to the control.


Flaxseed Irradiation Total phenolics Flavonoid Cyanid Tocopherol Fatty acids 



  1. 1.
    Oomah BD, Mazza G (2000) Functional foods. In: Francis FJ (ed) Wiley encyclopedia of science and technology, vol 2, 2nd edn. Wiley, New YorkGoogle Scholar
  2. 2.
    Chung MWY, Lei B, Li-Chan ECY (2005) Isolation and structural characterization of the major protein fraction from NorMan flaxseed (Linum usitatissimum L.). Food Chem 90:271–279CrossRefGoogle Scholar
  3. 3.
    Leeson S, Summers JD (2005) Commercial poultry nutrition. University Books, GuelphGoogle Scholar
  4. 4.
    Cunnane SC, Ganguli S, Menard C et al (1993) High alpha-linolenic acid flaxseed (Linum usitatissimum): some nutritional properties in humans. Br J Nutr 69:443–453CrossRefGoogle Scholar
  5. 5.
    Torkan M, Entezari MH, Siavash M (2015) Effect of flaxseed on blood lipid level in hyperlipidemic patients. Rev Recent Clin Trials 10:61–67CrossRefGoogle Scholar
  6. 6.
    Roseling H (1994) Measuring effects in humans of dietary cyanide exposure to sub lethal cyanogens from Cassava in Africa. Acta Hortic 375:271–283CrossRefGoogle Scholar
  7. 7.
    Imran M, Anjum FM, Butt MS, Siddiq M, Sheikh MA (2013) Reduction of cyanogenic compounds in flaxseed (Linum usitatissimum L.) meal using thermal treatment. Int J Food Prop 16:1809–1818CrossRefGoogle Scholar
  8. 8.
    Wanasundara PKJPD, Amarowicz R, Karab MT, Shahidi F (1993) Removal of cyanogenic glycosides of flaxseed meal. Food Chem 48:263–266CrossRefGoogle Scholar
  9. 9.
    Lacroix M, Quattara B (2000) Combined industrial processes with irradiation to assure innocuity and preservation of food products—a review. Food Res Int 33:719–724CrossRefGoogle Scholar
  10. 10.
    Shawrang P, Sadeghi AA, Behgar M, Zareshahi H, Shahhoseini G (2011) Study of chemical compositions, antinutritional contents and digestibility of electron beam irradiated sorghum grains. Food Chem 125:376–379CrossRefGoogle Scholar
  11. 11.
    Tresina PS, Mohan VR (2012) Physico-chemical and antinutritional attributes of gamma irradiated Vigna unguiculata (L.) Walp. subsp. unguiculata seeds. Int Food Res J 19:639–646Google Scholar
  12. 12.
    Fintzou AT, Kontominas MG, Badeka AV, Stahl MR, Riganakos KA (2007) Effect of electron-beam and gamma-irradiation on physicochemical and mechanical properties of polypropylene syringes as a function of irradiation dose: study under vacuum. Radiat Phys Chem 76:1147–1155CrossRefGoogle Scholar
  13. 13.
    Yalcin H, Ozturk I, Hayta M, Sagdic O, Gumus T (2011) Effect of gamma-irradiation on some chemical characteristics and volatile content of linseed. J Med Food 14:1223–1228CrossRefGoogle Scholar
  14. 14.
    El-Shennaway HM, El-Niely HFG, Hamaza RG (2010) Physiological and biochemical impacts of radiation processed full-fat linseed. J Rad Res Appl Sci 3:965–986Google Scholar
  15. 15.
    ISO/ASTM (2013) Practice for use of a cellulose triacetate dosimetry system, ISO/ASTM51650. ASTM International, West ConshohockenGoogle Scholar
  16. 16.
    ASTM (2004) Practice for using the Fricke reference standard dosimetry system, ASTM E 1026. ASTM International, West ConshohockenGoogle Scholar
  17. 17.
    AOAC International (1999) Official methods of analysis of AOAC International, 16th edn. AOAC International, GaithersburgGoogle Scholar
  18. 18.
    Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28:49–55Google Scholar
  19. 19.
    Ayvouet-Grand A, Vennat B, Pourrat A, Legret P (1994) Standardization of unextraction the propolis and identified of principaux constituents. J Pharm Belg 49:462–464Google Scholar
  20. 20.
    Bradbury MG, Egan SV, Bradbury JH (1999) Determination of all forms of cyanogens in cassava roots and cassava products using picrate paper kits. J Sci Food Agric 79:593–601CrossRefGoogle Scholar
  21. 21.
    Egan SV, Yeoh HH, Bradbury JH (1998) Simple picrate paper kit for determination of the cyanogenic potential of cassava flour. J Sci Food Agric 76:39–48CrossRefGoogle Scholar
  22. 22.
    Podda M, Weber C, Traber MG, Packer L (1996) Simultaneous determination of tissue tocopherols, tocotrienols, ubiquinols, and ubiquinones. J Lipid Res 37:893–901Google Scholar
  23. 23.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509Google Scholar
  24. 24.
    Beheshti Moghadam MH, Shehab A, Cherian G (2017) Methionine supplementation augments tissue n-3 fatty acid and tocopherol content in broiler birds fed flaxseed. Anim Feed Sci Technol 228:149–158CrossRefGoogle Scholar
  25. 25.
    SAS Institute Inc (2001) Statistical analysis system (SAS) user’s guide: statistics, version 9.1. SAS Institute, CaryGoogle Scholar
  26. 26.
    Hahm S, Son H, Kim W et al (2013) Effects of gamma irradiation on nutrient composition, anti-nutritional factors, in vitro digestibility and ruminal degradation of whole cotton seed. Anim Feed Sci Technol 55:123–130CrossRefGoogle Scholar
  27. 27.
    Nayefi M, Salari S, Sari M, Behgar M (2014) Treatment by gamma or electron radiation decreases cell wall and gossypol content of cotton-seed meal. Radiat Phys Chem 99:23–25CrossRefGoogle Scholar
  28. 28.
    El-Neily HFG, El-Shennawy HM (2013) Influence of irradiated cottonseed meal on biochemical responses of growing Albino rats. Arab J Nucl Sci Appl 46:287–299Google Scholar
  29. 29.
    Sokhey AS, Hanna MA (1993) Properties of irradiated starches. Food Struct 12:397–410Google Scholar
  30. 30.
    Moradia M, Behgar M, Afzalzadeh A, Norouzian MA (2015) Effects of electron irradiation, sodium hydroxide and polyethylene glycol on the utilization of pistachio by-products by Zandi male lambs. Small Rumin Res 127:1–7CrossRefGoogle Scholar
  31. 31.
    Oyeyemi SM, Lawal AO (2012) Reduction of cyanide content in cassava by gamma irradiation from CIRUS COBOL (60) teletherapy machine. Cont J Appl Sci 5:69–73Google Scholar
  32. 32.
    Draganic ZD, Draganic IG, Azamar JA, Vujosevic SI, Berber MD, Negron-Mendoza A (1985) Radiation chemistry of overirradiated aqueous solutions of hydrogen cyanide and ammonium cyanide. J Mol Evol 21:356–363CrossRefGoogle Scholar
  33. 33.
    Ogura H (1967) Radiolysis of hydrogen cyanide in aqueous system part 1. Estimation of radiolytic yield of hydrogen cyanide and product investigation. J Radiat Res 8:93–99CrossRefGoogle Scholar
  34. 34.
    Marcu D, Damian G, Cosma C, Cristea V (2013) Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). J Biol Phys 39:625–634CrossRefGoogle Scholar
  35. 35.
    Moosavi KS, Hosseini S, Dehghan G, Jahanban-Esfahlan A (2014) The effect of gamma irradiation on phytochemical content and antioxidant activity of stored and none stored almond (Amygdalus communis L.) Hull. Pharm Sci 20:102–106Google Scholar
  36. 36.
    Harrison K, Were LM (2007) Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of almond skin extracts. Food Chem 102:932–937CrossRefGoogle Scholar
  37. 37.
    Kim J, Lee BC, Lee J, Nam K, Lee S (2008) Effect of electron-beam irradiation on the antioxidant activity of extracts from Citrus unshiu pomaces. Radiat Phys Chem 77:87–91CrossRefGoogle Scholar
  38. 38.
    Carocho M (2012) Comparative effects of gamma and electron beam irradiation on the antioxidant potential of Portuguese chestnuts (Castanea sativa Mill.). Food Chem Toxicol 50:3452–3455CrossRefGoogle Scholar
  39. 39.
    Buyn W, Kang J, Kwon H, Hayashio Y, Mori T (1995) Physicochemical properties of soybean oil extracted from gamma irradiated soybeans. Radiat Phys Chem 46:659–662CrossRefGoogle Scholar
  40. 40.
    Golge E, Ova G (2008) The effects of food irradiation on quality of pine nut kernels. Radiat Phys Chem 77:365–369CrossRefGoogle Scholar
  41. 41.
    Mexis SF, Kontominas MG (2009) Effect of g-irradiation on the physicochemical and sensory properties of cashew nuts (Anacardium occidentale L.). Food Sci Technol 42:1501–1507Google Scholar
  42. 42.
    Daun JK, Przybylski R (2000) Environmental effects on the composition of four Canadian flax cultivars. In: Proceedings of the 58th meeting of the Flax Institute of the United States, pp 80–91Google Scholar
  43. 43.
    Lalas S, Gortzi O, Tsaknis J, Sflomos K (2007) Irradiation effect on oxidative condition and tocopherol content of vegetable oils. Int J Mol Sci 8:533–540CrossRefGoogle Scholar
  44. 44.
    Lakritz L, Fox JB Jr, Hampson J, Richardson R, Kohout K, Thayer DW (1995) Effect of gamma radiation on levels of a-tocopherol in red meats and turkeys. Meat Sci 41:261–271CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • M. H. Beheshti Moghadam
    • 1
  • M. Rezaei
    • 1
  • M. Behgar
    • 2
    Email author
  • H. Kermanshahi
    • 3
  1. 1.Department of Animal Science, College of Animal Science and FisheriesSari Agricultural Sciences and Natural Resources UniversitySariIran
  2. 2.Nuclear Science and Technology Research InstituteKarajIran
  3. 3.Department of Animal Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran

Personalised recommendations